

Real-time Magnetic Anomaly Detection using Mobile Autonomous Platforms

Greg Schultz, Jon Miller White River Tech. 115 Etna Rd., Lebanon, NH 03766, USA Rahul Mhaskar Geometrics, Inc. 2190 Fortune Dr., San Jose, CA 95131, USA

28 March, 2018 SAGEEP, Nashville, TN, USA

MFAM Miniature Magnetometer

Laser-pumped Total-field Cesium Optical Magnetometer

• Small size:

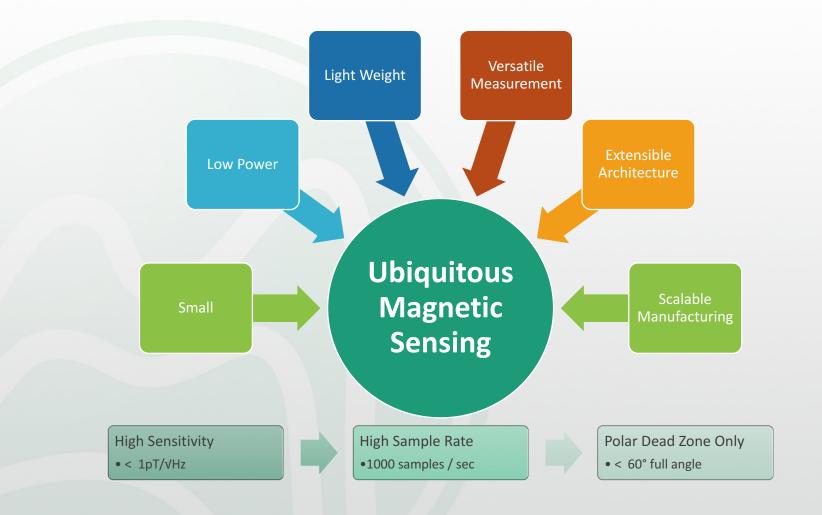
15 cm³ sensor and 200 cm³ electronics

- High performance:
 - ~ 1pT/vHz noise, 1 KSps (GPS Sync), 400 Hz BW
- Low power operation: 2.5W / sensor nominal
- Dead Zone: Polar, ± 30°

Reconfigurable dual-sensor module for:

Gradiometry

- Intrinsic heading error compensation
- Dead-zone free operation


* Strategic Environmental Research and Development Program (SERDP) Projects MM-1512 and MM-1568

- Light Weight: Each Sensor: 25g, Electronics Module: 190g
- Customizable interface for multi-sensor applications
- Designed for manufacturability
- Built-in inertial measurement sensors

MFAM Characteristics

UAS-deployed MFAM

- Drones established in Civil Engineering and Construction Industry, Mining, Agriculture, Security, Property Management, ...
- AeroMAG: Only UAS-deployed sensor for sub-surface magnetics with high-precision

MagArrow

GEOMETRICS

Drone-deployable lightweight self-contained cesium magnetometer with data logger

Applications: Infrastructure, UXO Detection, Geology, Minerals, Archeology

Features:

Weight: 1kg Size: 1m length Battery powered: 2 hours Onboard GPS WiFi Access Point Browser and app interface

Sensor Specs:

Heading Error: 10nT p-p Sensitivity: ~ 10 pT/VHz noise Sample Rate: 1 KSps (GPS Sync) Bandwidth: 400 Hz

MagArrow Prototype Results

MFAM Flight Testing

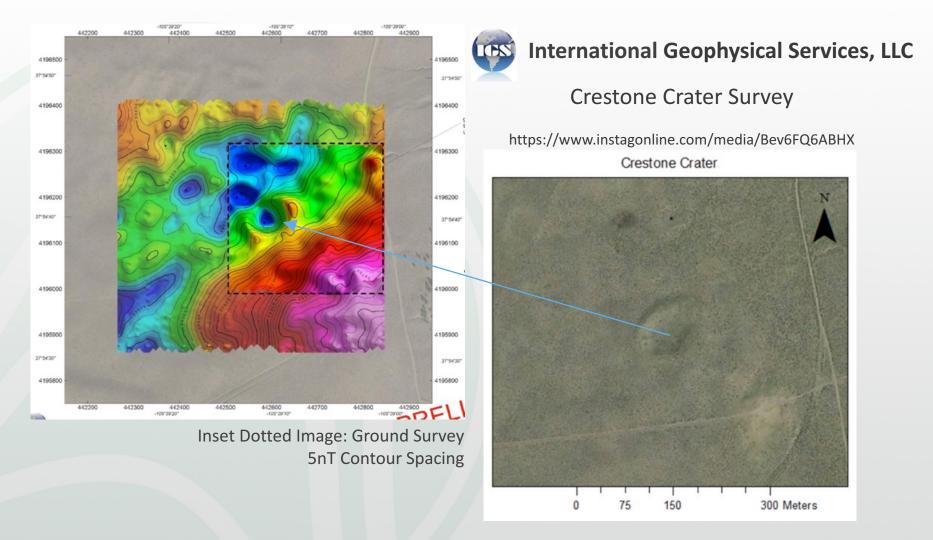
MFAM vs CGG Midas System Results – Hillman State Park buried wells

MFAM Arrow

CGG Midas System

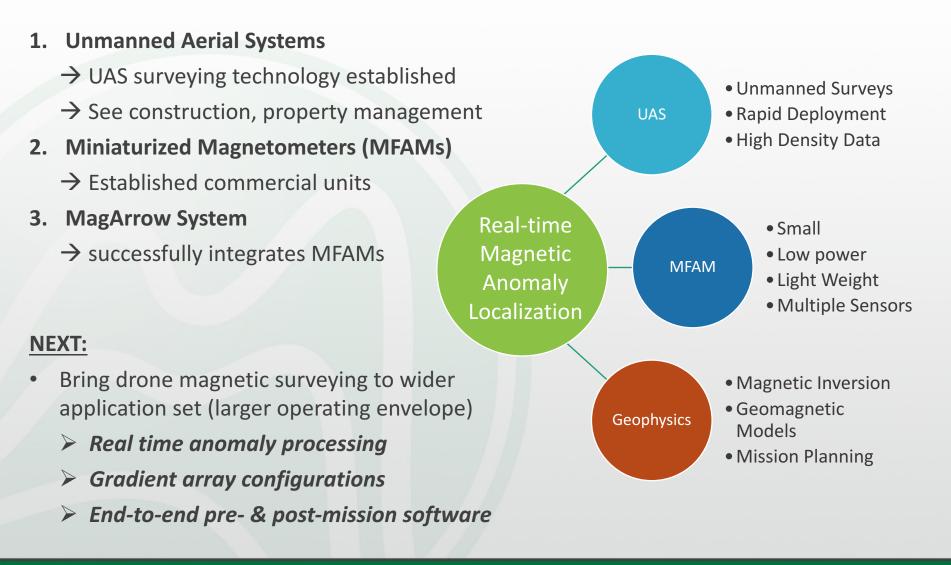
Drone-deployed Survey

Helicopter Survey

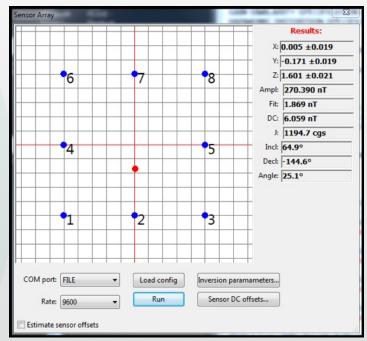

5/212.3 (2) 5/212.4 (2) 5/212.

MFAM A

MagArrow Prototype Results



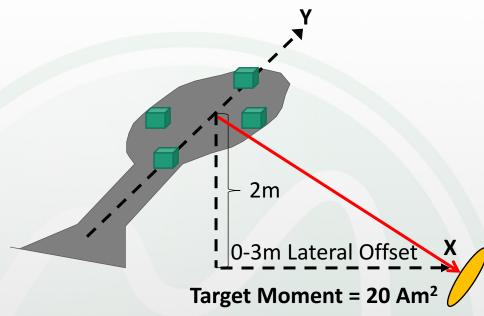
Multi-Sensor UAS MFAM



Multi-Sensor Array

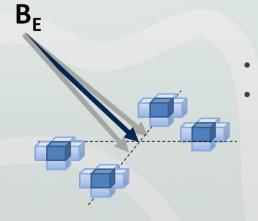
 Calculates position, magnitude and orientation of magnetic dipole in <u>Real Time</u>

- Runs dipole-fitting inversion in less than 10 ms
- Tested with simulated and actual data sets



* Strategic Environmental Research and Development Program (SERDP) Projects MR-2104

MagArrow Inversion: Gradient Configuration Simulations



Six Gradient Configurations Compared 684 simulations for each configuration:

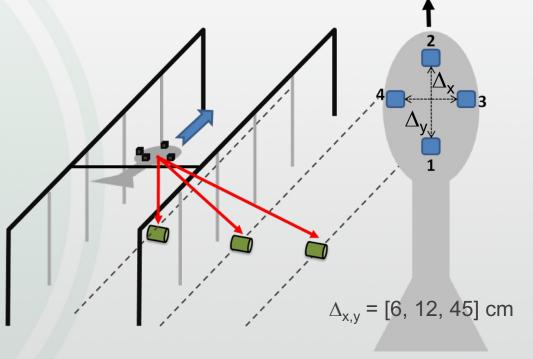
- B_{EARTH} inclination: 0 to 90°
- Heading: 0 to 90°
- Target moment: x, y, z directed
- Target lateral offset: 0 to 3m

Error added to model:

- B_{EARTH} inclination error: $\sigma_{std} = \pm 5^{\circ}$
- Sensor position error: $\sigma_{std} = \pm 1$ cm
- Error added to produce synthetic data

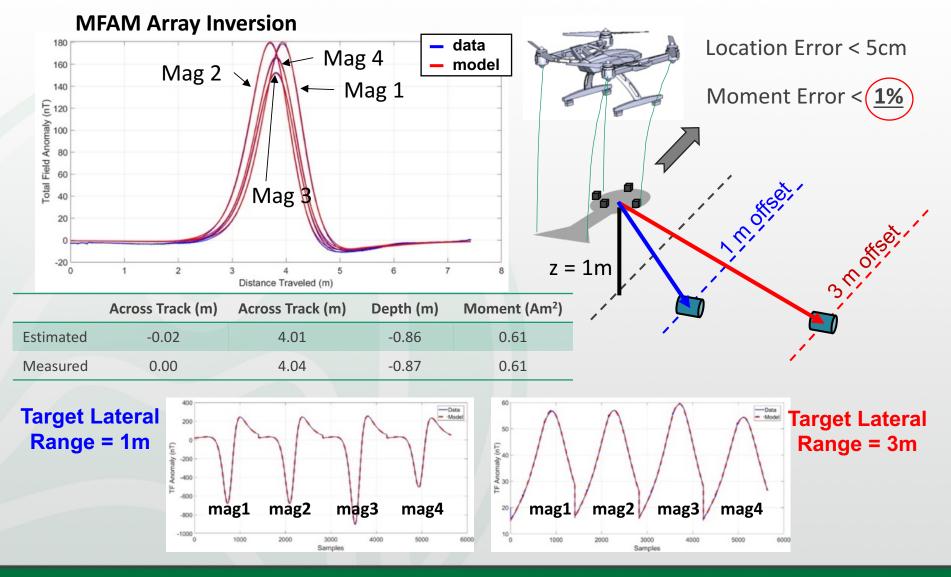
- Assessed Magnetic Moment and Target Localization Error
 - Inverted Moment and Position of Target
 - Within 2% error for Moment
 - Within 10% error for Position

MagArrow MFAM Gradient Testing



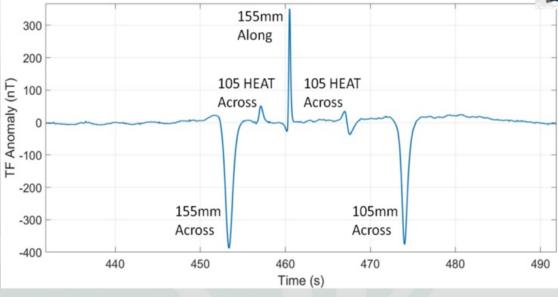
10m transect on UAV Test Gantry

Controlled Tests: AUV Target Overpasses


- Assess Varying Configurations
- Using WRT Motorized Gantry
- Gradient Array \rightarrow 4 MFAM Sensors
- Multiple Target Survey Realizations

MagArrow MFAM Gradient Validation

WRT UXO Flight Tests



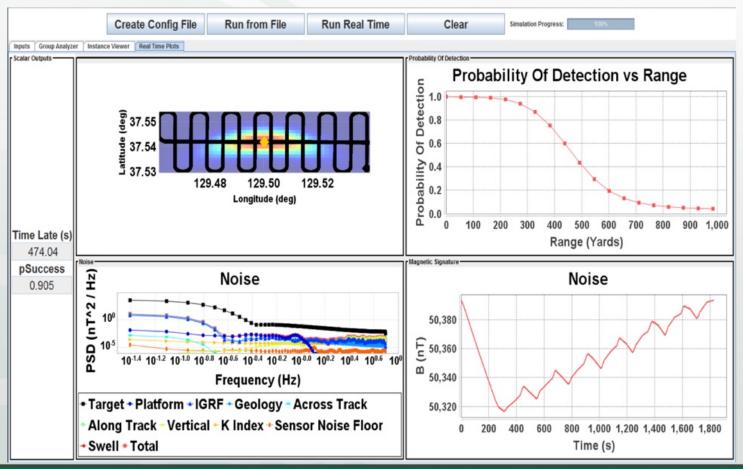
IVS Strip Flight Sortie:

- UAVA Eagle XF Drone Integration in New Hampshire (..brrrrr...)
- ~5 m altitude
- 5 UXO Targets

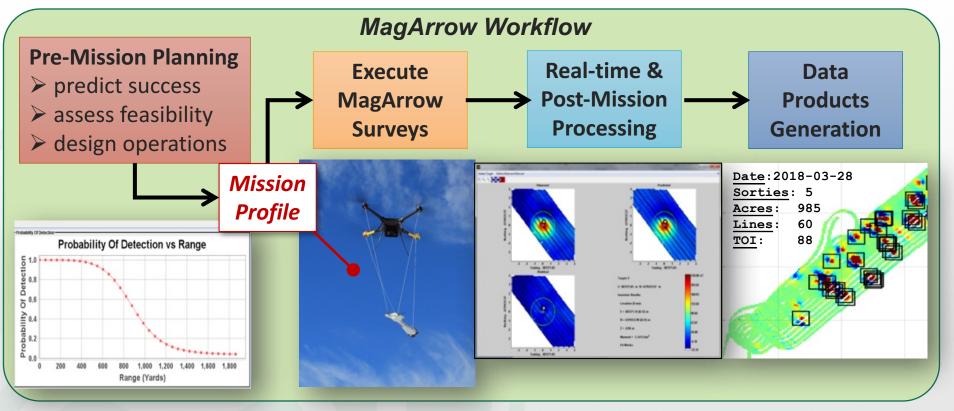
MUSE: MAD UAV Software Environment

→ Predicting Mission Success

• Predicts Noise and Target Signature for Evaluating Detection Range, SNR, Mission Success, Coverage Rate, etc. performance metrics



MUSE: MAD UAV Software Environment


- → Maximizing mission success through feasibility assessment
- Incorporates custom airframe noise + environmental noise from geology, geoatmospheric, motion, etc. (anywhere in the world)

Summary

- MagArrow UAS Technology Established for Drone MAG Surveying
- Improved Production/Cost-Efficiency for Wide Set of Applications
- Advancing Field-Ability → i) Pre-Mission Planning Software (MUSE),
 ii) Real-time Processing, & iii) Gradient Array Target Localization