

Underwater Dynamic Classification Technology

Jon Miller¹, Fridon Shubitidze¹, Greg Schultz¹, Andrew Baron²

White River Technologies, Inc.
 Dynamic Systems Analysis Ltd.

Marine UXO Classification

The marine UXO problem:

- Access to UXO is difficult; requires diver or ROV; targets obscured by marine growth or sediment
- Survey positioning quality significantly degraded underwater; limited availability of GPS methods
- Reacquisition is challenging due to access limitations compounded by positioning constraints

Current approaches:

 Advanced EMI very effective for land-based classification, but deployment underwater limited by increased standoff and positioning constraints

Background: Dynamic Classification

Dynamic classification methods based on those demonstrated successfully under MR-201225, benefits for underwater include:

- One pass classification means no cued reacquisition
- Methods are particularly tolerant of positioning errors

white river

Classification Approach: 2D vs. 3D

Position error tolerance: 3D EMI

white river

- Each sensor position provides complete data for inversion of polarizabilities
- Polarizability "clusters" obtained from multiple sensor locations
- No need to accurately track
 relative position vectors, R_n
- May be useful for underwater towed operation where towpoint surge could reduce accuracy of relative position tracking over short distances

Polarizability Cluster: Classification Decision

3D Dynamic classification decision flow:

- Library match performed on polarizability cluster
- Average of cluster locations (cluster center) provides location estimate
- Targets ranked based on library match value

white river

Underwater Dynamic Classification Concept

Sensor Design:

- Enables 3D classification approach
- Optimized for increased standoff range
- Extended for towed survey swath of 3m

white river

technologies

Z Coil

Transmitter Field Optimization

Optimized for uniform field distribution at ranges >1 meter

white river

Electromagnetic Simulation: Dynamic Encounters

250 Dynamic Simulations:

• 20m lines (+/-10m from target)

white river

- Across track offsets +/-1.6m
- Standoff ranges 1m 2.4m
- TOI included 81mm 155mm
- Dynamic noise added from OPTEMA survey data

Electromagnetic Simulation: Dynamic Encounters

- Library match value of 0.9 used for classification quality threshold
- 81mm 1.4m; 105mm 1.8m; 155mm 2.4m reliable classification depths
- Transmitter effective power = 200 A-turns

Experimental Setup: Grid Measurements

- 2/3-scale mockup replicates full-scale concept Tx spacing
- Static grid measurements collected to compare model predictions with actual inversion results
- Sensor noise captured and added to simulation to produce synthetic data

Electromagnetic Experiment: Model Verification

- 30 grid measurements
- Includes well constrained and poorly constrained grid locations
- Predicted match within 5% of observed match

Constrained

Poorly Constrained

Electromagnetic Experiment: Error Simulation

Electromagnetic Experiment: Error Simulation

- No change in classification quality for up to 15cm sample-to-sample position error
- Quality match value (0.9 or higher) maintained to 50cm error

Hydrodynamic Modeling and Simulation

ProteusDS

DSA ProteusDS Simulation Environment:

- Identifies forces acting on towed body
- Finite element model determines towed body response to load cases
- Accounts for mass distribution and buoyancy (volume of components)
- Drag analysis accounts for hydrodynamic shielding through Virtual Wind Tunnel (VWT) simulations

Hydrodynamic Model: Design

- Four point tow bridle designed for yaw and pitch stability
- 6 DOF rigid body model that calculates loads and buoyancy force
- Towline angle determined by drag and clump weight
- Depth determined by towline angle and layback

Hydrodynamic Simulation: 25 Load Cases

Category	Sub-Category	test	Test Number	Comments				
Stability Load Cases								
	Towed EMI sensor righting							
	moment	D - 11	6.04	Array only, no towline. Initial roll/pitch offset.				
		KOII	S-01					
		FILCH	3-02					
	Transient response	Sugar	S 02	Towline present, yaw/heave offset.				
		Sway Heave (falling)	S-03 S-04					
		Heave (rising)	S-04					
	Wave response			Wave test cases, both wave encounter frequencies.				
		Sea state 3 - opposing	S-06	Height: 1.25m Period: 5.0sec				
		Sea state 3 - with	S-07	Height: 1.25m Period: 5.0sec				
	Cross current			Platform stability and sway position in 0.5 m/s and 1 m/s cross current				
		0.5 m/s	S-08					
		1 m/s	S-09					
Control Load Cases								
	Winch response			Determine towed EMI sensor heave response to winch control				
		1.0 m/s tow speed, 25kg clump weight	C-01					
		1.0 m/s tow speed, 50kg clump weight	C-02					
		1.0 m/s tow speed, 75kg clump weight	C-03					
		1.5 m/s tow speed, 25kg clump weight	C-04					
		1.5 m/s tow speed, 50kg clump weight	C-05					
		1.5 m/s tow speed, 75kg clump weight	C-06					
		2.0 m/s tow speed, 25kg clump weight	C-07					
		2.0 m/s tow speed, 50kg clump weight	C-08					
		2.0 m/s tow speed, 75kg clump weight	C-09					
Operating Load Cas	es							
	Operating configurations			Determine loads and layback on the system during normal towing operations				
		Tow speed 1 knot	0-1					
		Tow speed 2 knot	0-2					
		Tow speed 3 knot	0-3					
		Tow speed 4 knot	0-4					
	Turning	Turning 1	0.5	Determine array stability when turning				
		running - 1	0-5	Determine towed EMI conser reaction on start up or				
	Start/stop			sudden stop				
		Sudden stop	0-6					
		Start un	0-7					

16

white river technologies

Hydrodynamic Simulation: Stability

 Stability aided by increased metacentric height (h) for 3D configuration

white river

- Increases righting moment and improves roll and pitch stability
- Roll and pitch stability tested for 30 degree perturbation; settles to within 5 degrees of neutral within 3 seconds (roll) and 20 seconds (pitch)

Hydrodynamic Simulation: Heave Response

- Sensor heave response evaluated for tow point heave and surge encountered in Sea State 3 conditions (head and following seas)
- Maximum heave variability is +/-15cm for 1.25m wave height
- Indicates stability for maintaining seafloor standoff

Towline Tension

Load case:	Mean tension - Bottom (kN):	Max tension – Bottom (kN):	Mean tension - Top (kN):	Max tension - Top (kN):
S-06	2.32	4.98	2.44	5.20
S-07	2.26	4.09	2.37	4.28

white river

Summary

- Methods that limit number of underwater reacquisitions will have significant cost benefit for marine UXO remediation
- Dynamic classification has the potential to reduce reacquisition by eliminating cued survey and reducing diver reacquisition for false alarms
- 3D sensor design may provide position error tolerance that is beneficial for towed deployment
- Modification of land-based sensor configuration may improve ability to operate at increased standoff
- Initial hydrodynamic analysis indicates that there are no significant operational barriers to implementing a 3D configuration for towed deployment

white river

Acknowledgments

- Underwater Sensor Design Feasibility ESTCP MR-201614;
- 2. Dynamic Classification Live Site Demonstration ESTCP MR-201225

Thanks to:

Dr. Hendrik Muller (WHOI) – Underwater TEM Modeling

Contact: *miller@whiterivertech.com* 603 678 8387

www.whiterivertech.com