Underwater Munitions Expert System for Remediation Guidance

MR-2645

Sarah Rennie, Alan Brandt, Jon Ligo The Johns Hopkins University Applied Physics Laboratory In-Progress Review Meeting 15 May 2018

MR-2645: Underwater Munitions Expert System for Remediation Guidance

Performers: S. Rennie, A. Brandt, J. Ligo

Technology Focus

 Effective management of underwater Munitions Response Sites require prediction of UXO location, movement, and depth of burial

Research Objectives

Synthesis of multiple processes

Project Progress and Results

- Physics-based process models
- Bayesian network updates
 - Spatial
 - Temporal

Technology Transition

 Practical applied tool for use by site managers Underwater Munitions Expert System UnMES

Project Team

The Johns Hopkins University Applied Physics Laboratory

Sarah E. Rennie, Alan Brandt, Jonathan Ligo

Oceanic, Atmospheric & Remote Sensing Sciences Group

Collaboration with

Carl Friedrichs	VIMS	SERDP MR-2224/MR-2647	
Joe Calantoni & Blake Landry	NRL Stennis	SERDP MR-2320	
Peter Traykovski	WHOI	SERDP MR-2319/MR-2729	
Jack Puleo	Univ. of Delaware	SERDP MR-2503	
Meg Palmsten & Allison Penko	NRL Stennis	SERDP MR-2733	
Art Trembanis & Carter Duvall	Univ. of Delaware	SERDP MR-2730	
Diane Foster	Univ. of New Hampshire SERDP MR-2647		

Problem Statement

• Guide sustainable management of contaminated sites by predicting times and areas of enhanced burial, mobility and aggregation.

Challenge: inexact knowledge of

- initial deployment
- environmental conditions
- response to forcing for varying UXO characteristics

Approach : probabilistic prediction of UXO behavior

- Physics-based process models only capture part of observed variability
- Model as Bayesian network:
- retain knowledge about uncertainty
- inputs and predictions in form of probability distribution (PDF)
- Best estimate in face of inherent uncertainties

Technical Objective

Develop a computer-based probabilistic expert system for predicting UXO location and burial.

- 1) Synthesize and improve basic knowledge of underwater UXO scour, migration, burial, re-exposure, and re-burial
- 2) Address knowledge gaps using laboratory experiments and in-depth literature review
- 3) Develop a probabilistic expert system to predict areas of munitions concentration, exposure and stability:
 - Compilation of important environmental factors
 - Physics-based modeling of burial and mobility processes
 - Validation by extant field & laboratory data
- 4) Build prototype software tool demonstrating methodology: Underwater Munitions Expert System (UnMES)

Technical Approach Topics

- 1) Updated UnMES
- 2) Impact penetration
- **3) "Light" UXO (low specific gravity** γ)
- 4) Speed of storm arrival

Technical Approach: Bayesian Network Updated "event" version of UnMES

- 1) "Flare" UXO to represent light (low γ) munitions
- 2) Initial burial: impact penetration or burial from previous events
- 3) Lagged time-dependent burial & rate of storm increase
- Total burial = Initial + Scour + Liquefaction

Approach : Model High-Speed Impact Penetration

IDA Report

- Concern: mobility potential
- Focus on shallow burial

JHU/APL Report

- Concern: UXO exposed following significant erosion
- Focus on deep burial

High-speed impact at sediment

- Consider shallow water (< 10m)
- Depends on tail and fin breakage
 Treat probabilistically
- Predictions from existing models vary

Concerted science effort needed to understand impact burial in saturated non-cohesive sediment

(20 kPa or S-num = 7)

Nose-down penetration into sediment

Approach: Explore Range of UXO Specific Gravity γ

Include Light (low specific gravity) munitions in UnMES

Approach: Rate of Wave Growth

Burial \longleftrightarrow Mobility

- Characterize storm by how fast waves increase: dH_{sig}/dt
- Impose increased time scale (10X) for scour burial

> High rate of wave growth is unusual occurrence

Approach: Rate of Wave Growth

For heavy UXO, mobility likely only if scour burial is slow or suppressed

Results: Topics

- 1) Erosion/Accretion: burial and re-exposure by geomorphological processes
- 2) Spatial Implementation of UnMES
- 3) Characterizing Extreme Storms
- 4) Temporal Implementation

Results: Re-exposure / Burial Processes

Engineering models implemented but require location-specific tuning

Results: Spatial Implementation

Replicate "event" UnMES Bayes Net at multiple spatial locations
varying bathymetry and sediment across model region

Bathymetry and Sediment fixed within each UnMES replicate

Results: Spatial Implementation

Example based on MR-2733 DELFT3D bathymetry: total of 16 unique provinces

Auto-generate custom BN replicate for each Depth + Sediment province

Results: Characterize Storm Events

Example query: What size storm could cause full burial in 8 m depth?

Results: Characterize Storm Events

Use synthetic storm analysis to extend time series for analysis

Temporal Extension: Dynamic Bayes Net

sequencing UnMES using Dynamic Bayes Network architecture

Temporal Extension: Dynamic Bayes Net

Characteristics of quiescent interstorm period may dominate accretion

19

•					
MigrationDistance					
Stay	72.6				
Near	26.0				
Far	1.32				
10.6 ± 19					

Transition Plan

- Collaboration with USACE (A. Schwartz) to solicit feedback from project and technical managers of underwater munitions sites.
 - Prototype questionnaire has been developed:
 - What poses an environmental liability at your site?
 - Identify primary risk factors
 - Characterize munitions types most frequently encountered
 - What types of decisions that are made to manage that liability ?
 - What tools are currently used to address risk?
 - Characteristic time scales of decision making (CERCLA phases)
 - Explore potential for workshop, face-to-face meeting or web conferences with managers.
- Investigating effective visualization tools

Transition Plan: Prototype Visualization Tool

Example multivariable visualization with GUI for interactive interrogation:

Present output in manner readily used by managers: Translate probabilistic result \rightarrow simple risk metrics

Issues

- 1) Delays in obtaining processed field data from SERDP collaborators
- 2) Validation challenges: # of observations
 - Explore use of synthetic data

BACKUP MATERIAL

MR-2645 Publications

• Scientific Literature:

 Ligo, J., S. Rennie, A. Brandt, "Probabilistic Prediction of the State of Discarded Underwater Munitions," Joint Statistical Meeting, Statistics and the Environment, JSM-329728, July 2018.

• SERDP Publications:

- Rennie, S.E., A. Brandt, J.Ligo, "Probabilistic Expert System Site Guidance for Remediation and Management of Underwater Munitions", SERDP-ESTCP Symposium, November 2017.
- Rennie, S.E., Brandt, A., "Status of Underwater Impact Penetration Modeling for use in the Underwater Munitions Expert System", SERDP Project MR-2645, JHU/APL Technical Report FPS-t_17-0456, November 2017.

UnMES Approach: Bayesian Network

Bayesian belief network (BN) - a directed acyclic graph

- nodes are random variables
 - represented by probability distribution
 - records and propagates inherent uncertainty
 - parameter ranges discretized into selected # of states or "bins"
- Inks (arrows) are directional connections
 - represent statistical dependencies between the nodes
 - relationships quantified as Condition Probability Table (CPT)
- ➢ Designed and implemented using Netica™
 - > Monte Carlo exploration of process models in Matlab \rightarrow CPT
 - Input & output connections implemented in Matlab (JAVA API)
 - GIS capability: generate custom BN for fixed water depth and sediment type bins

Probabilistic Model Skill Assessment Ranked Probability Skill Score

