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Technology Focus
• Effective management of underwater 

Munitions Response Sites require 
prediction of UXO location, movement, 
and depth of burial

Research Objectives
• Synthesis of multiple processes

Project Progress and Results
• Physics-based process models 
• Bayesian network updates

• Spatial
• Temporal

Technology Transition
• Practical applied tool for use by site 

managers
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Problem Statement
● Guide sustainable management of contaminated sites by predicting 

times and areas of enhanced burial, mobility and aggregation.
Challenge: inexact knowledge of
• initial deployment
• environmental conditions
• response to forcing for varying UXO characteristics  

Approach : probabilistic prediction of UXO behavior
• Physics-based process models only capture part of 

observed variability
• Model as Bayesian network:
 retain knowledge about uncertainty
 inputs and predictions in form of probability distribution (PDF) 

● Best estimate in face of inherent uncertainties
4



Technical Objective
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Develop a computer-based probabilistic expert system
for predicting UXO location and burial.

1) Synthesize and improve basic knowledge of underwater 
UXO scour, migration, burial, re‐exposure, and re‐burial

2) Address knowledge gaps using laboratory experiments and   
in-depth literature review 

3) Develop a probabilistic expert system to predict areas of 
munitions concentration, exposure and stability:

• Compilation of important environmental factors
• Physics-based modeling of burial and mobility processes
• Validation by extant field & laboratory data  

4) Build prototype software tool demonstrating methodology:

Underwater Munitions Expert System (UnMES) 



Technical Approach Topics
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1) Updated UnMES

2) Impact penetration

3) “Light” UXO (low specific gravity )

4) Speed of storm arrival  



Technical Approach: Bayesian Network
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1) “Flare” UXO to represent light ( low   ) munitions
2) Initial burial: impact penetration or burial from previous events 
3) Lagged time-dependent burial & rate of storm increase
4) Total burial = Initial + Scour + Liquefaction   

Updated “event” version of UnMES
Environmental 
setting

Initial conditions

Output 
predictions

Intermediate variables
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Approach : Model High-Speed Impact Penetration 
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Nose-down penetration into sediment 

High speed impact burial 
in sandy sediments 
(20 kPa or S-num = 7)

Geotechnical 
model

Ballistic 
model

155 mm 
shell

IDA Report 
• Concern: mobility potential
• Focus on shallow burial  

JHU/APL Report
• Concern: UXO exposed 

following significant erosion 
• Focus on deep burial  

High-speed impact at sediment
• Consider shallow water (< 10m)
• Depends on tail and fin breakage

 Treat probabilistically
• Predictions from existing models vary

clearance depth

Concerted science effort needed to understand 
impact burial in saturated non-cohesive sediment 



Approach: Explore Range of UXO Specific Gravity 
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 Include Light (low specific gravity) munitions in UnMES
Flares and marine 
markers are dominant 
problem for EOD at 
Eglin AirBase.
Estimate of Missile 
densities range from 
 = 1.8 to 2.2 

483 EOD Reports: 
~ 1000 UXO 

Pyrotechnics: 58% 
Rockets:          4%    
Bomb:  22% 

W-
151A W-

151B

80% of  beach sighting in OSPAR 
dataset are pyrotechnics and missiles

Mk26 Flare on seabed
HAWAI‘I UNDERSEA MILITARY MUNITIONS ASSESSMENT (HUMMA) 
2015

Liquefaction and mobility models sensitive to   include full range 



Approach: Rate of Wave Growth
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Flare

Howitzer

Lagged 
scourEquilibrium 

scour

Burial   Mobility 
• Characterize storm by how fast 

waves increase:  dHsig/dt

• Impose increased time scale 
(10X) for scour burial 

< 0.3 m/hr
0.3 to 0.6

> 0.6 m/hr

 High rate of wave growth 
is unusual occurrence



Approach: Rate of Wave Growth

 For heavy UXO, mobility likely only if scour burial 
is slow or suppressed

Example Storm in 8 m depth



Results:  Topics

1) Erosion/Accretion: burial and re-exposure by 
geomorphological processes

2) Spatial Implementation of UnMES
3) Characterizing Extreme Storms
4) Temporal Implementation 



Results: Re-exposure / Burial Processes 

1) Ripples

2) Dune migration

3) Seasonal shore adjustment

4) Shoreline erosion

1) Manmade disturbance:  
1) cable laying 
2) pipeline activity
3) bottom-trawling
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13Engineering models implemented but require location‐specific tuning



Results: Spatial Implementation 
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Depth Bins

2 m

10 m

4 m
3 m

5 m
6 m

8 m

Bathymetry and Sediment fixed within each UnMES replicate 

Sediment Bins

pebble

fine sand

medium

coarse

Replicate “event” UnMES Bayes Net at multiple spatial locations 
• varying bathymetry and sediment across model region 



Results: Spatial Implementation 
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Example based on MR-2733 DELFT3D bathymetry: 
total of  16 unique provinces

Depth Bins Sediment Bins
Depth+Sediment 

Combinations

Auto‐generate custom BN replicate for each Depth + Sediment province



Results: Characterize Storm Events  
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5

diagnostic 
query

Example query: What size storm could cause full burial in 8 m depth?

Related Question: How often do storms that big occur?

Advise managers on likelihood of extreme events



Results: Characterize Storm Events 
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Characterize  Synthesize
• Limited data time series length 

poor statistics of extreme events
• Capture joint distributions

 Copulas: specify marginal univariate 
PDF of multivariate behavior 
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Use synthetic storm analysis to extend time series for analysis



Temporal Extension: Dynamic Bayes Net
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Initial 
Conditions

Event 1 Event 2

Time 
expansion

sequencing UnMES using Dynamic Bayes Network architecture



Temporal Extension: Dynamic Bayes Net
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Initial 
Conditions

Interstorm
period 

characteristics 

Event 1 Event 2

Characteristics of quiescent interstorm period may dominate accretion 



Temporal Extension: Dynamic Bayes Net
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Initial 
Conditions

migration prediction may 
adjust spatial distribution 

Event 1 Event 2

Temporal results need to interact with spatial implementation



Transition Plan

● Collaboration with USACE (A. Schwartz) to solicit feedback from 
project and technical managers of underwater munitions sites.
 Prototype questionnaire has been developed:

 What poses an environmental liability at your site?
– Identify primary risk factors
– Characterize munitions types most frequently encountered

 What types of decisions that are made to manage that liability ?
 What tools are currently used to address risk?
 Characteristic time scales of decision making (CERCLA phases)

 Explore potential for workshop, face-to-face meeting or web 
conferences with managers.

● Investigating effective visualization tools

21



Transition Plan: Prototype Visualization Tool
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Present output in manner readily used by managers:
Translate probabilistic result  simple risk metrics

Example multivariable visualization with GUI for interactive interrogation:  

200 400 600 800 1000 1200
Distance (cross shore)

-500

0

500

1000

1500

2000

D
is

ta
nc

e 
(a

lo
ng

 s
ho

re
)

Fully 
Buried

Proud

Area: 400 sq. m.
UXOs: Flares, Mortars

Color shows 
mode of 
Burial PDF

Arrows show 
Migration distance 
& direction

Interrogate for 
details of PDF



Issues
1) Delays in obtaining processed field data from SERDP 

collaborators
2) Validation challenges: # of observations

 Explore use of synthetic data 
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BACKUP MATERIAL
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MR-2645 Publications
● Scientific Literature:

● Ligo, J., S. Rennie, A. Brandt, “Probabilistic Prediction of the State of 
Discarded Underwater Munitions,” Joint Statistical Meeting, Statistics and 
the Environment, JSM-329728, July 2018.

● SERDP Publications:

● Rennie, S.E., A. Brandt, J.Ligo, “Probabilistic Expert System – Site 
Guidance for Remediation and  Management of Underwater Munitions”, 
SERDP-ESTCP Symposium, November 2017.

● Rennie, S.E., Brandt, A., “Status of Underwater Impact Penetration 
Modeling  for use in the Underwater Munitions Expert System”, SERDP 
Project MR-2645, JHU/APL Technical Report FPS-t_17-0456, November 
2017.
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UnMES Approach: Bayesian Network

26

Bayesian belief network  (BN) - a directed acyclic graph 
 nodes are random variables

 represented by probability distribution 
 records and propagates inherent uncertainty

 parameter ranges discretized into selected # of states or “bins”  
 links (arrows) are directional connections 

 represent statistical dependencies between the nodes
 relationships quantified as Condition Probability Table (CPT)

 Designed and implemented using Netica™ 
 Monte Carlo exploration of process models in Matlab CPT
 Input & output connections implemented in Matlab (JAVA API)
 GIS capability: generate custom BN for fixed water depth and 

sediment type bins 



Probabilistic Model Skill Assessment  
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Ranked Probability Skill Score 


