UAS mounted EMI Sensor for UXO detection and classification

Fridon Shubitidze⁽¹⁾, Randall Reynolds⁽²⁾, Michele Maxson⁽¹⁾, David Lozano⁽²⁾, Maximilian A. Orman-Kollmar⁽¹⁾, Quinn, Brian⁽²⁾, Micheil Prishvin⁽³⁾, Gia Saparishvili⁽³⁾, Benjamin Barrowes⁽²⁾

Problem Statement

- Airfields are most immediate and lucrative targets for an adversary
- Destroying the runways basically means destroying the entire air operations

Rapid Airfield Damage Assessment System (RADAS)

Goal: To develop, build and mount Ultralightweight system for rapid airfield damage assessment.

Current Advanced EMI sensors

ULEMA: Ultra-Light ElectroMagnetic Array

Custom Rx designed

- Small and lightweight
- 10 layer PCB
- 10 turns on each layer, 10cm square
- Center tap for instrumentation amp
- 3-channel Rx amplifier board Low noise preamp

Data pathways and DAQ system

- Mini PC running Windows10
- Multi channel DAG with 10MS/s
- Custom Tx PCBs

System's Robustness

Temperature distribution map on the Tx board surface after 2 hours of continuously operating the system

ULEMA-A

- consists of three 45 cm diameter small and one large transmitter loops;
- weighs about 13.5 pounds.
- The three small Tx coils are designed to illuminate targets from different sides.
- Large Tx coil is used to enhance detection, location, and identification of deep targets.
- The Rxs collect target responses at a sample rate of 10 MHz.
- outputs the raw transient decay measurements grouped into 30 logarithmically spaced time gates whose center times range from 100 µs to 8.3 ms

Wide dynamic range

UXO classification workflow

I. Data Acquisition

UAS Data Collection

Inverted depth

Inverted polarizabilities

Inverted depth

Testing at Tyndall AF base

Way points

$imes 10^{6}$ 0.02 3.32151 3.3215 0.015 3.32149 0.01 3.32148 0.005 Е 3.32147 ы ц ц л 3.32146 0 -0.005 3.32145 -0.01 3.32144 -0.015 3.32143 -0.02 6.4475 6.448 6.4485 Easting [m] $imes 10^5$

Detection map

81 mm projectile

Penetrator

Conclusions:

- ULTRA-A system designed, bult and test
- EMI data inversion and classification models were adapted to ULEMA-A
- > UAS mounted EMI system was demonstrated

Acknowledgments:

This work was supported by the AF Rapid Airfield Damage Assessment System (RADAS) program.

Multi targets inversion

Measured depth 16 cm Estimated depth 20 cm

Measured lateral offset 5 cm Estimated Lateral offset 0cm

Multi targets inversion

Measured depth 110cm Estimated depth 100 cm

Measured lateral offset 10cm Estimated Lateral offset 30cm

