# Considerations for Advanced Geophysical Classification Integration on Guam

Greg Abrams, P.G., Weston Solutions, Inc. Ryan Steigerwalt, P.G., Weston Solutions, Inc.



**ESTCP Project Number MR-201231** 

SAGEEP - 2018 Nashville, Tennessee

# Acknowledgements



This research was supported in part by the U.S. Department of Defense through the Environmental Security Technology Certification Program (ESTCP)

#### **ESTCP** Munitions Response Live Site Demonstration

Andersen Air Force Base, Guam ESTCP Project Number MR-201231



### **OVERVIEW**

- Site History
- AGC and DGM Equipment
- Survey Design
- Implementation Challenges
- Survey Results



# INTRODUCTION



- Andersen Air Force Base (20,000 acres)
- Located in Yigo (Gee-Go) on the norther end of Guam
- Primarily used as B-29 staging base during WWII
- Continues to support strategic operations in the region and serves as a staging base for activities in ASIA and the South Pacific.
- Guam is a strategic military stronghold known as the "tip of the spear"





# **Guam Military History**

- US territory after the Spanish-American War
- Invaded by Japanese military on December 10, 1941
- Japanese occupation of Guam lasted from 1941 to 1944
- The Battle of Guam began on July 21, 1944
- Japanese forces officially surrendered on August 10, 1944
- Heavy military activities resulted in a variety of American and Japanese war time remnants, including MEC, to be distributed throughout the island.





# **Munitions** Types

- MK II Hand Grenade
- 20mm Mortar
- 60mm Mortar
- 81mm Mortar
- 105mm Projectile
- 155mm Projectile
- 5-inch Projectile
- 6-inch Projectile
- 100lb bomb



# **Regulatory Drivers**



- Environmental Security Technology Certification Program (ESTCP)
- The Military Munitions Response Program (MMRP)
- Military Construction (MILCON)Program
- \$9B of future Military Construction Planned on Guam
- All items require careful excavation by trained unexploded ordnance (UXO) technicians
- Often 90% of excavated objects are non-hazardous metallic objects or geologic features
- Excavation includes expensive and disruptive safety measures (e.g. barriers, exclusion zones)
- If items could be determined with high confidence to be non-hazardous some of these expensive measures could be eliminated or non-hazardous items could be left unexcavated



### Site Selection



- North Ramp Parking (NRP) area – 3 acres
- Chosen as the first AGC demonstration in Guam
- High probability of encountering MEC
- Demonstration was integrated with previously scheduled MILCON removal action
- 80.2 inches of annual rainfall
- Average 226 days of precipitation



# **Project Objectives**



- Overall Objective; Validate classification technology over the NRP area at Andersen AFB
- Install Instrument Verification Strip (IVS)
- Install 36 blind seeds to support the Geophysical System Verification (GSV) plan
- Perform Dynamic detection survey using NRL TEMTADS 2X2
- Select TEMTADs targets and integrate with previously selected EM61 targets
- Perform cued target interrogation using TEMTADS 2X2 on selected targets
- Process cued geophysical data to correctly classify TOIs on site

#### **Performance Objectives**

| Performance Objective                                                                  | Metric                                                             | Success Criteria                                                                                                                                     |
|----------------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| epeatability of Instrument<br>rerification Strip (IVS)<br>neasurements                 | Amplitude of EM anomaly                                            | Down-track location ±25 cm                                                                                                                           |
|                                                                                        | Measured target locations                                          | Library match ≥90% using 3-criterion<br>metric with equal weighting to the<br>three criteria using first day's IVS<br>inversion as the library item. |
| complete coverage of the<br>emonstration site                                          | Footprint coverage calculated using UX-Process Footprint Coverage  | >= 85% coverage at 0.50-m line spacing; and                                                                                                          |
|                                                                                        | Quality Control (QC) tool; excludes<br>inaccessible areas.         | >= 98% coverage at 0.60-m line<br>spacing                                                                                                            |
| long-line measurement spacing                                                          | Point-to-point spacing from data set                               | 98% < 25-cm along-line spacing                                                                                                                       |
| etection of all TOI                                                                    | Percent detected of TOI                                            | 100% of TOI detected within 40-cm halo of the surveyed location                                                                                      |
| ued interrogation of anomalies                                                         | Instrument position                                                | 100% of anomalies where the center<br>of the instrument is positioned<br>within 40 cm of actual target location                                      |
| orrectly classify QC seeds and<br>orrectly classify native and<br>opulation seed items | Percent classified as TOI                                          | 100% classified as TOI                                                                                                                               |
| orrectly identify group                                                                | Percent of TOI and excavated non-<br>TOI grouped correctly         | 85% correctly grouped in the small, medium, and large groups                                                                                         |
| orrect estimation of extrinsic<br>arget parameters                                     | Measured location and depth to center of mass of recovered items   | X, Y < 15 cm (1σ)<br>Z < 10 cm (1σ)                                                                                                                  |
| Naximize correct classification of<br>on-TOI                                           | Number of false alarms eliminated                                  | Reduction of clutter digs by >50%<br>while meeting all other<br>demonstration objectives                                                             |
| Ainimize number of anomalies<br>hat cannot be analyzed                                 | Number of anomalies that must be classified as "Unable to Analyze" | Reliable target parameters can be<br>estimated for > 95% of anomalies on<br>each sensor anomaly list.                                                |
|                                                                                        |                                                                    |                                                                                                                                                      |

# Equipment

- NRL Time-Domain Electromagnetic Multi-Sensor Towed Array Detection System (TEMTADS 2X2)
- Geonics EM61-MK2 single axis sensor
- Trimble R8 Real Time Kinematic (RTK) GPS
- Internal Measurement Unit (IMU)
- Geosoft Oasis Montaj with UX-Analyze









### **TEMTADS 2X2**



- Developed by the Naval Research Lab
- Four 35cm transmit coils with four 8cm tri-axial receiver cubes
- Center to center distance between transmit coils is 40cm creating an 80cm by 80cm array
- Traditionally deployed as a manportable wheeled cart with a sensor height of approximately 18cm
- One operator navigates equipment and second operator controls acquisition software using a field tablet
- Advantages; man-portable, provides ability to classify anomalies as being TOI or non-TOI
- Limitations; Sensor is not ruggedized to withstand inclement weather.

#### **TEMTADS 2X2**





# Survey Design



- Dynamic data was collected over 2.97 acres of NRP MRS
- Anomalies were selected from TEMTADS 2X2 dynamic survey
- Anomalies were combined with existing EM61-MK2 datasets
- All anomalies were selected for cued interrogation using the TEMTADS 2X2
- A total of 1,195 anomalies were selected for cued interrogation
- Cued datasets were processed using UX-Analyze Advanced to extract target parameters
- Parameters were passed to classification routines that were used to produce ranked anomaly lists
- Intrusive investigation of these anomalies was handled by the contractor performing the removal action



#### **Data Collection**

- Data collected using a 0.5m line spacing
- Lane control was established prior to survey using ropes and wooden stakes or beanbags
- Coverage was ensured using beanbags to mark instrument path during data collection
- Dynamic anomalies were marked in the field using nonmetallic pin-flags prior to cued investigation
- Dynamic survey took 5 days to complete (.6 acres/day)
- Cued collection took 10 days to complete (120 locations/day)

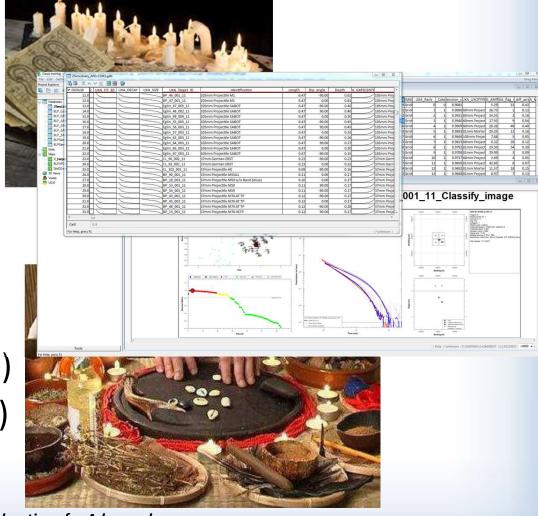




# Implementation Challenges



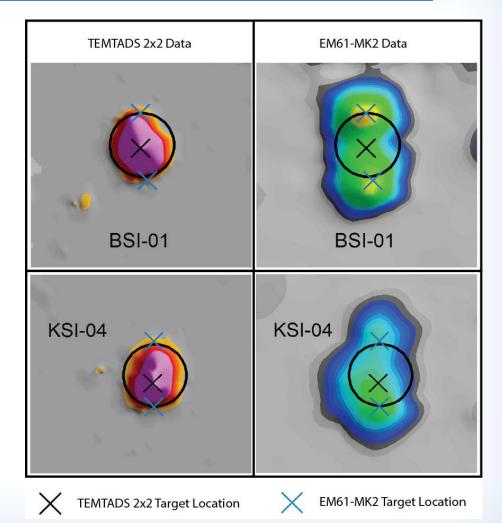
- Equipment is not weatherproof


   approximately 10 field days
   were lost due to inclement
   weather. 40% of field effort.
- Equipment is not rugged Wheels are held on by zip ties rather than non-metallic bolts or cotter pins
- No real-time status to monitor production during collection – Track Paths
- No option to import target lists into system – increases chances of operator error during collection due to manual entry
- Terrain limitations vegetation and slope



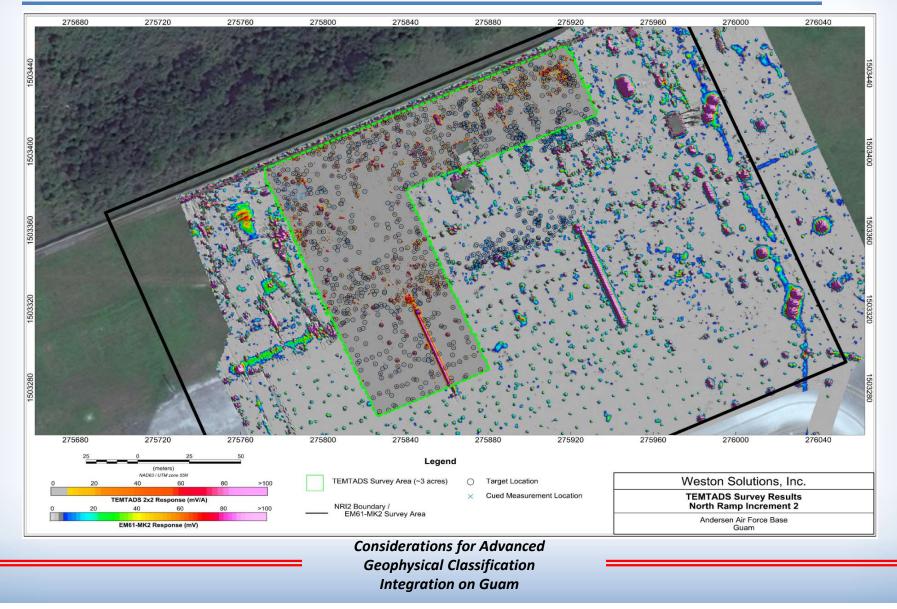
#### **Data Processing**



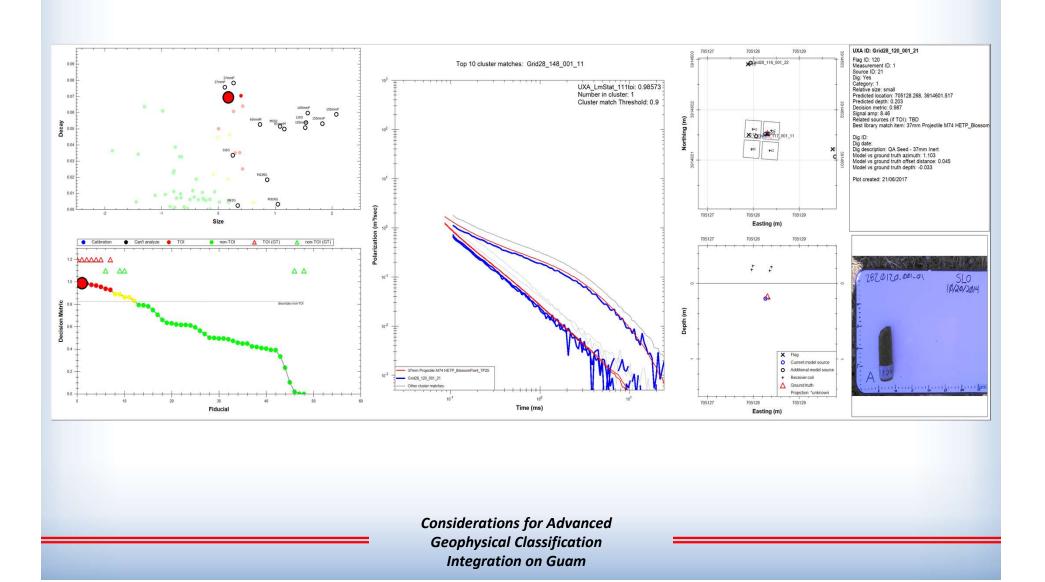

- Data Import and initial QC
- Static function tests
- Background removal
- Data Positioning
- Anomaly selection (dynamic)
- Library Validation (cued)
- Classify and Rank (cued)



### **Dynamic Detection**




- TEMTADS 2X2 is able to collect significantly more data than traditional EM61-MK2 surveys
- Multiple transmitters and receivers increase target resolution capabilities
- Average seed item offset with EM61-MK2 was 32cm
- Average seed item offset with TEMTADS 2X2 was 10.2cm
- Use of AGC equipment during dynamic collection can improve data results and reduce the number of necessary cued investigations
- Modern Dynamic AGC processing routines also have the ability to identify high-confidence non-TOI reducing the number of cued investigations




#### **Data Results**





#### **Data Results**

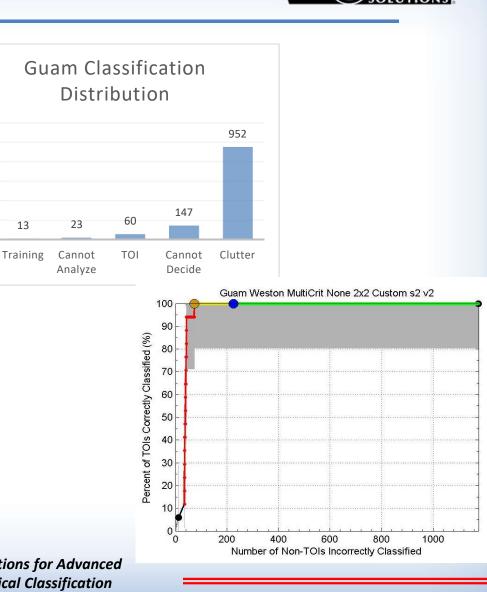


WLSJOEN SOLUTIONS

#### Data Results

- 970 anomalies identified in TEMTADS data
- 225 anomalies identified in EM61-Mk2 data
- 1,195 total cued locations
- 100% of TOI identified
- 81% in reduction

Considerations for Advanced Geophysical Classification Integration on Guam


1200

1000 800

> 600 400

> 200

0



### **QUESTIONS?**



