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Time-domain EM response of a UXO
UXO
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timetraditional approach: use inversion to get these and then
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Survey and system
UltraTEMA-4 system:

4 transmitters

12 receivers (3-component)

27 time channels

Height above sea-bottom: ~1 m

Challenges:

● Accuracy in location
● EM response of seawater and 

sediments (background)
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Can we classify directly from data?

Densely sampled data and correlated in space and time: a good candidate for 
convolutional neural networks.

input
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https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md
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Convolutional Neural Networks

Neural network

Supervised classification problem
provided data with labels, construct a function (network) that outputs labels given input data
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Convolutional Neural Networks

Neural networkFeatures   Input  

trainable parameters

Class 
probabilities

Training
define an optimization problem to estimate network parameters
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Convolutional Neural Networks

How do we translate these things to the UXO classification problem?
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Convolutional Neural Networks

How do we translate these things to the UXO classification problem?
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Defining label masks

Magnitude for each transmitter

Sum of 
magnitudes

Label mask 

color is different 
for each class
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Convolutional Neural Networks

How do we translate these things to the UXO classification problem?
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Probability layer and classification
probability

point-wise classification according to 
max probability
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eight different classes:

background 155 mm 105mm 81mm 60mm 40mm clutter0 clutter1
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Application to a line of data

Input features are created by using a sliding window:
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Application to a line of data

Input features are created by using a sliding window:
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Application to a line of data

Input features are created by using a sliding window:
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Application to a line of data

Input features are created by using a sliding window:
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Application to a line of data

Single acquisition line with three objects (classification 
results)
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Training for marine data

8 classes:
● background
● 155 mm
● 105 mm
● 81 mm
● 60 mm
● 40 mm
● Clutter0 (spheres and disks)
● Clutter1 (rods)

# of realizations:
● Training: 80,000
● Validation: 10,000

Randomly assign:
● Target class
● Location
● Orientation
● Noise level: approximate from 

background areas in the field data

3 m 

3.5 m 

1.5 m
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Calibration line Sequim Bay 2021

● 12 acquisition lines

● Current CNN requires 
background response removed

● Some ISOs present, we used only 
UXO objects to train (e.g. medium 
ISO ~ 81mm)
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Probability output of CNN 
probability
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Classification output of CNN - calibration line 2021
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Divide in cells to get a single probability value per cell:

Get average probability for cell and assign 
final label
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Average probability values for one cell:

average
probabilities
(using all points 
not classified as 
background)

Assign label with 
highest probability: 
“155 mm”

probability
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Average probability values for one cell:

average
probabilities
(using all points 
not classified as 
background)

Assign label with 
highest probability: 
“155 mm”

If object is classified as “clutter”, 
apply “safety” rule.

Safety rule:
if prob(clutter) < 0.3 then change 
label to next likely UXO

probability
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Predicted labels vs truth labels - calibration line 2021

predicted label

ground truth
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Predicted labels vs truth labels - calibration line 2021

● Correctly predicted clutter
predicted label

ground truth
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Predicted labels vs truth labels - calibration line 2021

● Correctly predicted clutter

● Did not miss any UXO
predicted label

ground truth
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Predicted labels vs truth labels - calibration line 2021

● Correctly predicted clutter

● Did not miss any UXO

● Classified to closest object 
included in training set

predicted label

ground truth

32



Blindgrid 2021 
Sequim Bay
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Blindgrid 2021
Sequim Bay

CNN classification output
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Blindgrid 2021
Sequim Bay

Predicted labels

rank label prob. dig

1 40mm 0.74 1

2 105mm 0.66 1

3 81mm 0.60 1

32 clutter0 0.55 0

33 clutter0 0.61 0
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Concluding remarks:

● A CNN with image segmentation architecture was successfully used to 
classify UXOs from marine EM data

● Some limitations:
○ CNN is relatively sensitive to effectiveness of background response removal
○ Objects used to generate synthetic data should be close to the objects on the field
○ Full inputs needed (if one receiver or transmitter is missing, we skip that window)

● Future work: 
○ Training with background response included
○ Explore ways to share information between different acquisition lines
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Concluding remarks:

Jorge Lopez-Alvis       jlalvis@eoas.ubc.caThank you!
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● A CNN with image segmentation architecture was successfully used to 
classify UXOs from marine EM data

● Some limitations:
○ CNN is relatively sensitive to effectiveness of background response removal
○ Objects used to generate synthetic data should be close to the objects on the field
○ Full inputs needed (if one receiver or transmitter is missing, we skip that window)

● Future work: 
○ Training with background response included
○ Explore ways to share information between different acquisition lines



Clutter design L1 and L2

L3 disk

PCA was helpful to decide whether clutter objects are very close to 
UXOs:
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CNN - image segmentation architecture

Features Output
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