A convolutional neural network for the classification of UXO in marine settings

Jorge Lopez-Alvis¹, Lindsey J. Heagy¹, Douglas W. Oldenburg¹, Stephen Billings², Lin-Ping Song²

¹University of British Columbia, ²Black Tusk Geophysics, Inc.

This work is supported by SERDP project MR22-3487

Time-domain EM response of a UXO

$$d(\mathbf{r}_R, t) = \mathbf{H}_R(\mathbf{r}, \mathbf{r}_R) \cdot \mathbf{P}(t) \cdot \mathbf{H}_T(\mathbf{r}, \mathbf{r}_T) \qquad \mathbf{L}(t) = \begin{pmatrix} L_1 & \\ & L_2 \\ & & L_3 \end{pmatrix}$$
$$\mathbf{P}(t) = \mathbf{A}(\phi, \theta, \psi) \cdot \mathbf{L}(t) \cdot \mathbf{A}^\top(\phi, \theta, \psi) \qquad \mathbf{L}(t) = \begin{pmatrix} L_1 & \\ & L_2 \\ & & L_3 \end{pmatrix}$$

UXO L2 = L3

time

Time-domain EM response of a UXO

$$d(\mathbf{r}_{R},t) = \mathbf{H}_{R}(\mathbf{r},\mathbf{r}_{R}) \cdot \mathbf{P}(t) \cdot \mathbf{H}_{T}(\mathbf{r},\mathbf{r}_{T})$$
$$\mathbf{P}(t) = \mathbf{A}(\phi,\theta,\psi) \cdot \mathbf{L}(t) \cdot \mathbf{A}^{\top}(\phi,\theta,\psi)$$
$$\mathbf{L}(t) = \begin{pmatrix} L_{1} \\ L_{2} \\ L_{3} \end{pmatrix}$$

traditional approach: use inversion to get these and then classify based on $\boldsymbol{\mathsf{L}}(t)$

Survey and system

UltraTEMA-4 system:

4 transmitters

12 receivers (3-component)

27 time channels

Height above sea-bottom: ~1 m

Challenges:

- Accuracy in location
- EM response of seawater and sediments (background)

Can we classify directly from data?

Densely sampled data and correlated in space and time: a good candidate for convolutional neural networks.

Supervised classification problem

provided data with labels, construct a function (network) that outputs labels given input data

How do we translate these things to the UXO classification problem?

How do we translate these things to the UXO classification problem?

How do we translate these things to the UXO classification problem?

(nx imes nrx imes nt imes (ntx imes 3))

Probability layer and classification

eight different classes:

point-wise classification according to max probability

Training for marine data

8 classes:

- background
- 155 mm
- 105 mm
- 81 mm
- 60 mm
- 40 mm
- Clutter0 (spheres and disks)
- Clutter1 (rods)

of realizations:

- Training: 80,000
- Validation: 10,000

Randomly assign:

- Target class
- Location (x, y, z)
- Orientation (ϕ, θ, ψ)
- Noise level: approximate from background areas in the field data

Calibration line Sequim Bay 2021

• 12 acquisition lines

- Current CNN requires
 background response removed
- Some ISOs present, we used only UXO objects to train (e.g. medium ISO ~ 81mm)

Probability output of CNN

Classification output of CNN - calibration line 2021

•	105mm		
•	155mm		
•	81mm		
•	60mm		
•	40mm		
•	clutter0		
	clutter1		

Divide in cells to get a single probability value per cell:

Average probability values for one cell:

Average probability values for one cell:

29

Correctly predicted clutter

µV/A

- Correctly predicted clutter
- Did not miss any UXO

µV/A

- Correctly predicted clutter
- Did not miss any UXO

µV/A

• Classified to closest object included in training set

Blindgrid 2021 Sequim Bay

CNN classification output

Blindgrid 2021 Sequim Bay

Predicted labels

rank	label	prob.	dig	
1	40mm	0.74	1	
2	105mm	0.66	1	
3	81mm	0.60	1	
•				
32	clutter0	0.55	0	
33	clutter0	0.61	0	

35

Concluding remarks:

- A CNN with image segmentation architecture was successfully used to classify UXOs from marine EM data
- Some limitations:
 - CNN is relatively sensitive to effectiveness of background response removal
 - Objects used to generate synthetic data should be close to the objects on the field
 - Full inputs needed (if one receiver or transmitter is missing, we skip that window)
- Future work:
 - Training with background response included
 - Explore ways to share information between different acquisition lines

Concluding remarks:

- A CNN with image segmentation architecture was successfully used to classify UXOs from marine EM data
- Some limitations:
 - CNN is relatively sensitive to effectiveness of background response removal
 - Objects used to generate synthetic data should be close to the objects on the field
 - Full inputs needed (if one receiver or transmitter is missing, we skip that window)
- Future work:
 - Training with background response included
 - Explore ways to share information between different acquisition lines

Clutter design L1 and L2 L1 and L2 L3 disk Clutter design L3 disk

CNN - image segmentation architecture

- ntx number of transmitters
- nrx number of receiver cubes
- nt number of time channels
- nx number of positions in window
- nc number of classes