Efficient Data Collection Practices using the APEX OnePass Sensor with Stencil SLAM and RTK-GNSS Technologies for a Remedial Action

Tanya Vander Vis¹, Dominique Seles¹, Jon Miller², Jeffery Leberfinger¹, Brian S. Brunette³, David Duggins⁴, Eric Tow¹

¹TerranearPMC (TPMC), LLC, ²White River Technologies (WRT), ³GSI Services Group, ⁴Kaarta

One-pass dynamic Advanced Geophysical Classification (AGC) survey of the Munitions Response Site (MRS)

- GNSS-denied areas:
 - Kaarta's Stencil 2-16 Simultaneous Localization and Mapping (SLAM) system
- GNSS-accessible areas:
 - RTK-GNSS
- AGC sensor:
 - WRT's APEX

Stencil 2-16 SLAM Positioning System

- Developed and manufactured by Kaarta
- 3D LiDAR, inertial measurement unit (IMU), commercial processor and Kaarta software
- External battery pack
- Stream UTM coordinates/NMEA GNSS data to an external sensor
- Simulates a Robotic Total Station (RTS) or Global Positioning System (GPS)

Tablet connected via Bluetooth to Stencil 2

Top: LiDAR (Velodyne VLP16)

Bottom: Stencil 2 computer, camera, IMU

Kaarta software

Stencil 2-16 SLAM Positioning System

- 100-meter LiDAR range
- 300,000 points
- Can create dense maps of environment to provide positional accuracies of 5-8 cm
- Areas can be as large as 20 grids of 100 ft x 100 ft

Tablet connected via Bluetooth to Stencil 2 computer

Kaarta software

Top: LiDAR (Velodyne VLP16)

Bottom: Stencil 2 computer, camera,

Stencil Method 3

- Uses survey control points to create georeferenced map
- Use "Mapping" mode to generate an initial base map
 - Scanning area generates a point cloud in local coordinates
 - SLAM's local coordinate system is tied to global coordinate system with Ground Control Points (GCPs)
 - Scan area with Stencil, record "Key Pose" on each GCP during scan
 - Use point cloud to generate geo-referenced base map
- Once initial base map is generated, use one of the "Localization" modes to navigate within previously generated base map
 - During scan, Stencil 2 locates itself within base map
 - Localization
 - Localization from last

"Mapping" at IVS location

GCP example

APEX

- Advanced Electromagnetic Induction (EMI) sensor designed for dynamic classification of buried UXO.
- Can integrate with SLAM, GNSS, and RTS positioning systems
- IMU for sensor pitch, yaw, and roll
- Ruggedized field acquisition touch screen computer with integrated data acquisition software
- Operated in push-cart/litter mode

Navigating APEX in MRS

APEX with SLAM

Munitions Response Site

- Remedial Action
- One-pass dynamic AGC survey
- 16.4 acres total
- 4.4 acres GNSS-denied
- Majority of grids in north area were partially GNSS-denied

Mini-golf area

GNSS-denied area

Planning for SLAM

Site Preparation:

- Determine GNSS-denied areas
- Plan Ground Control Points (GCPs) for aligning point cloud and trajectories to external survey data
 - Planned location of GCPs to be in area with satellite coverage
 - 100 ft apart
- GSI performed vegetation removal
- Install GCPs

Planning for SLAM

Plan a trajectory to each GCP, navigate to and record local Stencil position with "Key Pose"

- No overlapping paths
- No sharp turns
- Start ~50ft from first GCP
- Don't close trajectory loop
- No variable objects (vegetation, people, truck, etc) in area while generating base map
- Can set a 'blind radius' distance to ignore a set diameter around the Lidar (to remove the operator and sensor)

Initial Base map of **GNSS-denied** area

Created the Base Point Cloud with Stencil 2 mapping feature

- Stencil determines how it needed to move to match up successive laser scans from a 3D lidar
- Can create a 3-D registered point cloud while moving Can create a position estimate of where it is in that point cloud

Generated the reference map that was used for localization

- Georeferenced using Kaarta's proprietary loop closure method
- Accuracy of map checked with Kaarta UXO QC tool

4 point clouds created:

- IVS base map, mini golf area base map, two base maps in GNSS denied areas (Northeast, Northwest)
- All showed position accuracy of <8cm

	Grid_ID	Time	dX	dY	dZ	dXY	dXYZ	Roll(deg)	Pitch(deg)	Yaw(deg)
Example	SL-19 60D-SET 618	78.136	-0.033	-0.014	0	0.035	0.035	-0.648	0.172	-144.404
Example	GSN-G1A 60D-SET 750	168.337	-0.063	0.006	-0.01	0.063	0.064	-0.648	-0.168	-152.142
results	SL-18	234.437	-0.002	0.007	0.007	0.007	0.01	-0.329	-0.332	173.802
results	SL-17 60D-SET 716	299.338	0.02	-0.014	0.003	0.025	0.025	-0.324	0.038	-144.859
from UXO	BBN-28_05102022	425.64	0.013	0.061	-0.063	0.062	0.089	0.191	0.098	-57.731
	SL-16 60D-SET 715	488.44	0.001	-0.006	0.045	0.006	0.046	-0.39	-0.446	160.195
QC	SL-15 60D-SET 714	545.442	0.013	-0.027	-0.008	0.03	0.031	-0.18	-0.162	71.37
	GSN-F1a	590.542	-0.017	-0.019	0.02	0.026	0.032	-0.016	-0.208	78.816
	SL-12 60D-SET 711	653.143	0.007	0.003	-0.02	0.007	0.022	0.07	-0.048	18.911
	SL-08 60D-SET 707	723.443	-0.012	-0.011	-0.028	0.016	0.033	0.011	0.141	25.176
	BSN-11 60D-SET 752	794.744	0.007	0	0.019	0.007	0.02	-0.057	-0.406	7.201
	BSN-10 60D-SET	873.545	-0.036	-0.017	0.026	0.04	0.048	-0.168	-0.495	-158.705
	SL-06 60D-SET 705	937.945	0.002	0.01	-0.016	0.01	0.019	-0.159	-0.115	179.684
	SL-20 60D-SET 719	1001.347	-0.002	-0.04	0.004	0.04	0.041	0.028	-0.075	-132.241
	SL-14 60D-SET 713	1107.447	-0.005	0.021	-0.012	0.022	0.025	-0.405	-0.276	-100.947
	SL-11 60D-SET 710	1204.748	0.036	0.011	0.029	0.038	0.048	-0.271	-0.108	9.237
	SL-13 60D-SET 712	1270.049	0.002	0.024	0.006	0.024	0.024	0.057	0.097	22.111
	SL-21 60D-SET 720	1337.25	0.015	0.014	-0.015	0.02	0.025	-0.147	-0.22	117.388
	GSN-F1B 60D-SET 747	1431.251	-0.007	-0.006	-0.03	0.009	0.031	0.008	-0.068	30.009
	BSN-08 60D-SET 748	1498.651	-0.015	-0.054	0.025	0.056	0.061	0.023	0.293	57.499
	BSN-09_05102023	1575.052	-0.031	0.051	-0.034	0.06	0.069	-0.311	0.243	-4.07
	SL-07 60D-SET 706	1622.452	-0.009	-0.005	0.027	0.01	0.029	-0.214	0.076	-33.766
	MEAN					0.028	0.038	and the second second		the state of
	STDEV					0.019	0.019	States and the second		

0.001

MIN

MAX

Collecting Key Poses for IVS

Integration of SLAM with APEX

- Connects via serial to APEX computer
- Streams pseudo-NMEA string to APEXField
- IPAD used in the field to control and monitor the Stencil

SLAM mounted on APEX

Real Time Localization

- The Stencil matches current scan against a base map
- Select a starting point from generated list and a base map
- Confidences should be over 100,000 to ensure high quality data.
 - Measure how well current scan matches base map
- Position messages are sent over USB port as a simple simulated NMEA Pseudo-GNSS message
- White dots=real time, colored dots=base map

3D Example of Base Point Cloud – Grid D1a

Example of Stencil monitor during localization

Mapping Results

- QC seeds placed by GSI and QA validation seeds placed by the government.
- TPMC-WRT collected APEX One Pass data in 4.6 acres of GNSSdenied area with SLAM
- Point cloud base maps were created with an accuracy less than 8 cm
 - based on QC Tool results.
- 24 Blind QC seeds and 6 QA validation seeds were detected and classified correctly which met the position MQO's

SLAM vs. GNSS

• Seed position offsets (QC seeds)

Dual purpose IVS location

- Can select IVS location to be used for SLAM and RTK-GNSS
- Considerations:
 - Lighting conditions, bright or variable lighting due to absence of canopy may affect ability to localize
 - Sufficient objects for base map
 - Variability of objects (ie people, cars, etc.) if located in area of high traffic

Collecting daily IVS with SLAM

IVS SLAM vs. GNSS

• Seed position offsets

Survey Considerations and Best Practices

- Batteries need to be switched about every 1.5 hours (more often in cold temps)
- Can use "Localization from last"

Survey Set Up

- Takes time to switch between RTK-GNSS and SLAM, tried to do just one each day
- Did not go grid by grid to more efficiently survey with SLAM
- Tree circles

Survey Considerations and Best Practices

- Lidar won't reflect back in water (fog, lakes, puddles, etc)
- Ability to install GCPs if there is no satellite coverage
- Unit not waterproof yet
- IPAD overheats easily
- Variable lighting conditions

Survey Considerations and Best Practices

- Processing needs to be done on Stencil computer (can't send data back to the office unless they also have a Stencil)
- Large files generated

Daily QC

- Verify Stencil positioning on benchmark (done daily at IVS)
- Monitor confidence during survey
- APEXField can be set up to monitor confidence values

Questions?

• Contact info:

SLAM Advantages

• QC gaps

APEX One Pass AGC Area

Meters

SLAM Advantages

• Reacquisition tool

- Can be used for positioning/location of seeds
- reacquisition of targets in GNSS denied areas

SLAM Advantages

- Bare earth model showing ground surface elevation
- Potential sensor heights
 - Variable sensor height

