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Bottom Line Up Front

= This research addresses the Statement of Need (SON) MRSEED-23-S1 to
develop technologies to classify targets under complex conditions and
identify specific types of targets; especially in a cluttered environment

= Specifically, this work investigates time-frequency processing for the
purpose of assessing the feasibility of classifying UXO with similar structure
and distinguishing material composition or UXO with similar material
composition and small variations in structure

= The first half of this work demonstrated a structured quantitative approach
to spectral representations

= The second half of this work investigates signal separation and subsequent
impacts on spectral descriptors, as well as experiments in classification
using different time-frequency data representations
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Technical Objective

1. ldentify optimal/useful transform for time-frequency representation
suitable for feature selection from a time-frequency vs. aspect volume of
data

2. Implement signal processing methods that are effective in feature-space
reduction in the time-frequency domain for sparse dataset generation to
improve classification

3. Apply statistical analysis methods useful in signal separation in the time-
frequency domain for generating denoised data representations among
different UXOs in a clutter scene

4. Use interpretable DNNs to inform what frequency bands and time steps
are more influential in classification to support increased sparsity in
datasets used for classification and improve accuracy in classification
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Technical Approach

Task 1
(a) Dataset review, assessment,
labeling, & selection Task 1
(b) Time-frequency resolution
optimization (a) Time-frequency (b) Datasets &
transform subsets to test
Task 5
Task 2 Task 2 e 4 (a) Interim report
. , as -
(a) Spectral Descriptors analysis (5) Interim (b) Final report
report
Datasets in the
time-frequency Task 4
Task 3 aspect angle space (a) Implement deep neural
(a) Assessing the impact of networks (DNNs) for time series
denoising techniques Task 3 — Task 4 analysis
(b) Evaluate interpretable measures
Sparse datasets from application of DNNs

representing TFA features
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Overview

= Background: frequency analysis in ordnance characterization
* Time-frequency transform optimization
= Spectral descriptors

« Signal separation in the time-frequency domain- noise removal
approaches

« Classification using diverse time-frequency data
representations

« |nitial interpretable outcomes
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* FFT across entire time series
* Analysis in multiple domains:
» Aspect angle vs. frequency
« Wavenumber k, — k,
» High frequency resolution

* Missing time resolution
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In situ UXO shells from the
PONDEX 2009 Experiment [1]

7 V' SERDP



The interference between specular and
elastic scattering creates an acoustic

spectrum that can provide valuable

] - - - o va
Cylinder Wave Physics it o

Acoustic scattering “specular” in Acoustic Imaging Structural Acoustic Acoustic scattering related to

. . Regime . . . .
nature- direct reflections as a vibrational dynamics of the object,
function of impedance/grazing angle T both whole-body and internal
illustrate geometric shape of an 1 structure
object A <<d

Waves that propagate around the
circumference of the cylinder are
circumferential Rayleigh waves;
meridional Rayleigh waves

Helical Rayleigh waves: surface
elastic waves launched so that they
propagate in a spiral down the

cylinder propagate parallel to the cylinder axis
are.

Guided circumferential lamb ol T v

waves — elastic wave motion is 2D Scattering wave reflection paths - the

within the plane defined by wave ﬁ /A, direct path 1, and other multipath

propagation direction and the plate y directions 2-4

thickness direction

8 References: [2]-[5] %SERDP



Extending Dimensional Analysis iIn the LXS SHELLS

Time-Frequency Domain PONDEX 2010 -I
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While targets were either proud, half-

Bac k roun d buried, or flush buried, this work only
g considers proud targets on sand

» Past work by Morse & Marston [6] and Anderson & Sabra [7] in time-frequency
analysis for spherical and cylindrical shells demonstrates the capability to
characterize the mid-frequency enhancement waves circumnavigating objects in
underwater environments

* This work focuses on data collected from PONDEX 2009/2010, TREX 2013, and
CLUTTEREX 2017 experiments.

Collections on a 20 meter rail with an LFM chirp 1-30 kHz transmitting at 2 Hz
Each object is rotated clockwise by a 20° increment.

Datasets are named for the center angle designed to include +/- 10 degree of aperture
angle and +/- 5 degree overlap with the next dataset.

A complete 180° of angle returns is collected for each target with the assumption that
targets have axis symmetry along the longer axis.

Targets vary in range from the source by 5 meter increments from 5-40 meters
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Time-Frequency Transform Optimization

Transform Parameter Optimization

Performance Analysis
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Time-Frequency-Aspect Angle

Dimensionality Reduction from 3D to 2D Spectral Descriptors Over Frequency

» Spectral Crest

» Spectral Slope

» Spectral Centroid
mmmmm) ° Spectral Spread

» Spectral Skewness

Spectral Descriptors Over Time

* Normalized Renyi Entropy
* Frequency Variation

12 & SERDP



Aspect Angle [Deg]

&
S

&
S

IS
3

f
°

°

s
S

Spectral Descriptors ALUMINF:JOI\/INB)Eé SHELL

Spectral Crest Spectral Spread Spectral Centroid

ALUMINUM UXO SHELL Spectral Spread from Superlet

ALUMINUM UXO SHELL Spectral Crest from Superlet ALUMINUM UXO SHELL Spectral Centroid from Superlet «10%

30 10000

9000

25

8000

T 4
P ! F I 5 z
5} =) & =l 3
15 Tg = 7000 E § 5 E
2 g 4 g &
Z 3
o 0 6000
‘ 4 5 5000 03
\L . 000 el
125 13 135 14 14.5 6, 155 16
Time [msec] Time [msec]
Moderate deviations Larger deviations in Indlvguil ton?I Noise like signals Energy is centered Energy is centered
in spectral content spectral content sounds have low usually have large close 10 - 15 kHz close to 25 - 30 kHz

spectral spread spectral spread

s #YSERDP



Spectral Descriptors ALUMINUM UXO SHELL

Spectral Crest Spectral Spread Spectral Centroid

ALUMINUM UX0 SHELL Spectral Crest from Superlet
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Signal Separation in Time-Frequency

» Subspace array processing for the smoothed pseudo Wigner-Ville distribution
» Signal separation using a large spatial time frequency distribution

* The cross Wigner-Ville distribution provides a means to compute the coherence of two non-stationary
signals along both the time and frequency axis

» This is used for consecutive channels where the primary acoustic return is likely to be coherent across a
small subspace of the array, and noise is more likely to be random and vary per channel

* For a single snapshot of received time series across an array of N receivers, the XPSWVD can be
calculated for all the pairwise combinations and combined into a spatial time frequency distribution super
matrix (STFD) given as:

00 co T T ) Wllxlxl WV’C:LXZ o WVX’]_XN
Winxj(t,f) = f h('l') J g(u—t)xi (u+§) Xj* (u_z>9_]2ndeUdT — STFD =
U Wi, Wy, = Wiy

* Here the diagonal becomes the SPWVD for a single channel and off-diagonals are the XSPWVD for
channel pairs

« Sabra and Anderson [8], [9] propose to apply singular value decomposition to the full STFD matrix to
support extraction of the signal components from the noise. This approach leverages the notion that most
of the signal power is confined within the first n principal components with the noise dominating the n to N

components.
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Higher Order Singular
Value Decomposition for
the Superlet transform
(HOSVD)

» Shift from super matrix to 3D tensor
approach

» Eigenvalue decomposition with epsilon
thresholds set for eigenvalue
reconstruction [10]
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Reconstruction using eps = 0.1 is
too sparse

Reconstruction using eps = 1e-3 is
moderate but introduces some
artifacts in the reconstruction

Reconstruction using eps = 1e-5
removes the least signal content but
artifacts are still present in outcomes
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Time-Frequency Classification

Three groups of time-frequency data representation
Superlet Spectrograms Spectral Descriptors from the Superlet Spectrograms

80 Degrees

BN

'ﬂme [mSe: ]

Frequency [kHz]

32 Objects

" 35 Objects

Joint Time Frequency Scattering
Coefﬁments

26 Objects
Classification tests Aluminum Howitzer UXO
are run on each of Solid Aluminum Cylinder 155 mm Howitzer Original Material 100 mm
. uUxo
three categorles of Hollow Aluminum (Aluminum | 155 mm Howitzer no Solid Aluminum 100 mm
object type Pipe) Collar UXO Replica
155 mm Howitzer no Solid Steel 100 mm UXO
Nose no Collar Replica

18
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Neural Network Classification

Classification of Super Spectrogram and Spectral Classification of Joint Time Frequency Spin Up and Spin
Descriptors Down Coefficients [11]

Input is 2D ) ) ) ) Input is 3D tensor of all ZE) coefficientf )
Spectrogram angles selected = —-60, —70 , —80, —90 Time series angles selected = —-60, —70, —80, —90 for
input into JTFS transform
Data split = 70% training, 30% testing Data split = 70% training, 15% testing, 15% validation
14 layers 13 layers
initial learning rate of .012 initial learning rate of .005
L-2 regularization of 6.4530e-9 L2 regularization of .0001
150 epochs for training 150 epochs for training
Cross entropy loss function Cross entropy loss function
25 iterations are run for each aspect angle within a category 25 iterations are run for each aspect angle within a category

and for each spectral descriptor within a category
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Classification Outcomes

Spectral Descriptor Classification Results

Spectral Descriptor Howitzer Aluminum UXO
Spectral Centroid 59.09% 100% 30%
Spectral Crest 45.45% 57.14% 35%
Spectral Decrease 18.18% 42.86% 45%
Spectral Skewness 40.91% 78.57% 35%
Spectral Slope 27.27% 57.14% 35%
Spectral Spread 31.82% 71.43% 35%
Frequency Variation 45.45% 85.71% 35%
Renyi Entropy 50% 85.71% 45%

JTFS Transform Coefficients Classification Results

Category —60 =70 —80 —90
Howitzer 63.33% 36.67% 43.33% 80%
Aluminum 75% 100% 97.5% 100%
UXO 33.33% 33.33% 35% 33.33%
Superlet Spectrogram Classification Results
Category —60° =70 —80° —90°
Howitzer 63.64% 81.82% 72.73% 72.72%
Aluminum 71.43% 85.71% 71.42% 85.71%
UXO 40% 30% 50% 20%
20

Spectral descriptor classification results are
overall very poor and the least successfully
among the three time-frequency dataset
representations.

JTFS transform coefficients results are mixed,
lower scores give low confidence in this
approach

Single angle Superlet spectrograms generate
the highest classification scores among the
three time-frequency dataset representations

The aluminum category is consistently highest
scoring like because there are only two classes

The UXO category is consistently the lowest
scoring — this may indicate that characterizing
material composition among the same
geometric structure is a more challenging
problem to the networks
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Interpreting Classification Outcomes

Aluminum UXO Replica — Example with 100% classification rate

Confusion Chart: Superlet Spectrograms -90 Degrees
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Gradient activation weights are higher over times containing primary signal — or
higher power time-frequency content from the object’s acoustic return
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Conclusions

» The adaptive Superlet transform provides good time-frequency concentration and frequency
specificity with higher time-frequency resolution while the smoothed pseudo Wigner-Ville
distribution provides moderate time-frequency resolution with the best frequency specificity and
higher resolution at the expense of artifact cross-terms.

» Spectral descriptors over time demonstrate small & large deviations in spectral content, increase
and decrease of energy with increasing frequency, central frequency, as well as broad and narrow
bandwidth features. Spectral descriptors over frequency demonstrate angles & times of high and
low spectral concentration and variation/coherence.

» |nitial tests of signal separation using SVD methods in the time-frequency domain are
inconclusive. Results demonstrate a reduction in signal content with introduction of additional
artifacts and uncertainty on the optimal thresholds for reconstruction.

= Classification results demonstrate that simple use of the Superlet spectrogram and single angles
performs better than other time-frequency representations. Gradient activation maps illustrate
when the object’s acoustic return is of importance and leads to success and when the background
takes priority and leads to classification failure.
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Future Research

= Unexpected classification results shift this area of research in a
different direction —focus on pure time-frequency specitral
content for TREX & CLUTTEREX data

= Classification approach should be refined to focus the networks on the
acoustic return of the object of interest and steer away from
background content

= Could also consider using early time and late time angle slices from a
time-frequency aspect angle (Superlet) cube for classification input

= For volumetric data (MuST or SVSS), a small study is needed
to identify the orientation and feasibility of spectrogram
representation for buried objects
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Technology Focus

« Develop technologies to classify targets under complex conditions and identify specific types
of targets; especially in a cluttered environment.

Research Objectives

+ Investigate unexploded ordnance detection, characterization and classification through time-
frequency-aspect angle analysis

Project Progress and Results

* Identified and applied suite of time-frequency transforms optimized for high resolution and
concentration

» Applied spectral descriptors to time-frequency-aspect angle underwater sonar field datasets

Energy is moving
towards higher
frequencies

ALUMINUM UXO SHELL

REAL UXO SHELL

Energy is moving

« Experimented with subspace array signal separation in the time-frequency domain to try to a L~ towards higher
remove undesirable signal and noise = frequencies
+ Completed /_mtlal small scale classification experiments across multiple time-frequency data Q Energy is
representations > moving
Technology Transition i towards lower
. » , . . r = frequencies
* Fundamental research requiring additional exploration, experimentation, validation, and «»

slower
application to buried ordnance datasets before technology transition
26




Plain Language Summary

= Develop technologies to classify targets under complex conditions and identify specific
types of targets; especially in a cluttered environment.

= Develop framework for research in time-frequency aspect angle analysis on unexploded
ordnance, and demonstrate statistical tools and approaches that can provide distinguishing
spectral information among targets to characterize internal structure and potentially material
composition

= Current state of the art analysis of frequency spectral returns of targets in acoustic color
apply the Fourier transform providing perfect frequency resolution and zero time resolution.
The acoustic wave field return of an object on the seafloor varies over time. Those spectral
time variations are a function of multipath, environmental conditions, geometrics shape, and
wave field interactions with the object that are a reflection of internal structure and material
composition etc.

= This work extends beyond traditional acoustic color domain analysis of frequency vs. aspect
angle for an entire time series acoustic return by looking at variations, patterns, and
correlations that are only visible in the spatial time-frequency domain that may support
identification of specific types of target that differ in terms of internal structure or material

composition . % SERDP



Impact to DoD Mission

= This is the first SEED project presentation for this work. Providing strong
sound logic for time-frequency transform selection should dispel concerns
regarding tradeoffs and challenges with time-frequency distributions. In
addition, demonstrating statistical methods in the form of well established
spectral descriptor methods opens up a new area of research in
unexploded ordnance target characterization and classification, advancing
the current state of the art in new directions

= Current and historical work in this area has demonstrated the ability to
classify objects into to classes: natural and man-made objects

= This work is establishing a new analysis space for making headway in
classification between different man-made objects
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Publications

* Newcomb, W., et al. (2024). “Time-frequency spectral
optimization of underwater sonar acoustic returns for the
purpose of characterization using spectral descriptors”.

In Proceedings of the Acoustical Society of America 187th
Conference. Acoustical Society of America.

https://acousticalsociety.org/asa-virtual-fall-2024/
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