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Bottom Line Up Front

 This research addresses the Statement of Need (SON) MRSEED-23-S1 to 
develop technologies to classify targets under complex conditions and 
identify specific types of targets; especially in a cluttered environment 
 Specifically, this work investigates time-frequency processing for the 

purpose of assessing the feasibility of classifying UXO with similar structure 
and distinguishing material composition or UXO with similar material 
composition and small variations in structure
 The first half of this work demonstrated a structured quantitative approach 

to spectral representations
 The second half of this work investigates signal separation and subsequent 

impacts on spectral descriptors, as well as experiments in classification 
using different time-frequency data representations
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Technical Objective

1. Identify optimal/useful transform for time-frequency representation 
suitable for feature selection from a time-frequency vs. aspect volume of 
data

2. Implement signal processing methods that are effective in feature-space 
reduction in the time-frequency domain for sparse dataset generation to 
improve classification

3. Apply statistical analysis methods useful in signal separation in the time-
frequency domain for generating denoised data representations among 
different UXOs in a clutter scene

4. Use interpretable DNNs to inform what frequency bands and time steps 
are more influential in classification to support increased sparsity in 
datasets used for classification and improve accuracy in classification
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Technical Approach
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Task 1

Task 2

Task 3 Task 4

Task 5

(a) Dataset review, assessment, 
labeling, & selection

(b) Time-frequency resolution 
optimization

Task 1

(a) Time-frequency 
transform

(b) Datasets & 
subsets to test

(a) Spectral Descriptors analysis
Task 2

(a) Assessing the impact of 
denoising techniques

Task 3

(a) Interim report
(b) Final report

Task 5

(b) Interim 
report

(a) Implement deep neural 
networks (DNNs) for time series 
analysis

(b) Evaluate interpretable measures 
from application of DNNs

Task 4
Datasets in the 
time-frequency 
aspect angle space

Sparse datasets 
representing TFA features



Overview

Background: frequency analysis in ordnance characterization
 Time-frequency transform optimization
Spectral descriptors
• Signal separation in the time-frequency domain- noise removal 

approaches
• Classification using diverse time-frequency data 

representations
• Initial interpretable outcomes
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Traditional Acoustic Color Domain
• FFT across entire time series

• Analysis in multiple domains:

• Aspect angle vs. frequency

• Wavenumber 𝑘𝑘𝑥𝑥 − 𝑘𝑘𝑦𝑦
• High frequency resolution

• Missing time resolution

In situ UXO shells from the 
PONDEX 2009 Experiment [1]

PONDEX 2010
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Acoustic scattering “specular” in 
nature- direct reflections as a 
function of impedance/grazing angle 
illustrate geometric shape of an 
object

Acoustic scattering related to 
vibrational dynamics of the object, 
both whole-body and internal 
structure

Cylinder Wave Physics
The interference between specular and 
elastic scattering creates an acoustic 
spectrum that can provide valuable 
information about that object’s shape, 
composition, and orientation. 

Helical Rayleigh waves: surface 
elastic waves launched so that they 
propagate in a spiral down the 
cylinder

Waves that propagate around the 
circumference of the cylinder are 
circumferential Rayleigh waves; 
meridional Rayleigh waves 
propagate parallel to the cylinder axis 
are.
 Guided circumferential lamb 

waves – elastic wave motion is 2D 
within the plane defined by wave 
propagation direction and the plate 
thickness direction 

Scattering wave reflection paths - the 
direct path 1, and other multipath 
directions 2-4

References: [2]-[5]8



Extending Dimensional Analysis in the 
Time-Frequency Domain 
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ALUMINUM UXO SHELL REAL UXO SHELL STEEL UXO SHELL

Similar Features

Distinguishing Features

Early time arrivals consist 
of the direct specular 
reflection or the initial 
geometric response from 
the shape of the object, 
they have the shortest 
travel time path and the 
strongest intensity 
characteristic of the 
surface and its impedance 
or reflectivity.

Late time acoustic wave 
behaviors are from wave 
field interactions related to 
vibrational dynamics of 
the object, both whole 
body and internal 
structure (see next slide)

UXO SHELLS

PONDEX 2010
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Background

• Past work by Morse & Marston [6] and Anderson & Sabra [7] in time-frequency 
analysis for spherical and cylindrical shells demonstrates the capability to 
characterize the mid-frequency enhancement waves circumnavigating objects in 
underwater environments

• This work focuses on data collected from PONDEX 2009/2010, TREX 2013, and 
CLUTTEREX 2017 experiments. 

• Collections on a 20 meter rail with an LFM chirp 1-30 kHz transmitting at 2 Hz
• Each object is rotated clockwise by a 20° increment.
• Datasets are named for the center angle designed to include +/- 10 degree of aperture 

angle and +/- 5 degree overlap with the next dataset.
• A complete 180° of angle returns is collected for each target with the assumption that 

targets have axis symmetry along the longer axis.
• Targets vary in range from the source by 5 meter increments from 5-40 meters 

10

While targets were either proud, half-
buried, or flush buried, this work only 

considers proud targets on sand
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Time-Frequency Transform Optimization
Transform Parameter Optimization

Optimizing Stankovic concentration to 
inform parameter selection for each 
transform

SPWVD1 SPWVD2STFTStockwell Superlet

SPWVD1

SPWVD2

STFT

Stockwell      

Superlet                                

The Superlet transform and 
smoothed pseudo Wigner-Ville 

transform have high 
concentration, good frequency 
specificity, and better SNR in 

the spectral elements
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• Spectral Crest
• Spectral Slope
• Spectral Centroid
• Spectral Spread
• Spectral Skewness

Time-Frequency-Aspect Angle
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Spectral Descriptors Over Frequency

• Normalized Renyi Entropy
• Frequency Variation

Spectral Descriptors Over Time

Dimensionality Reduction from 3D to 2D
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Spectral Descriptors PONDEX
ALUMINUM UXO SHELL

Larger deviations in 
spectral content

Moderate deviations 
in spectral content

Energy is centered 
close to 25 - 30 kHz

Energy is centered 
close 10 - 15 kHz

Individual tonal 
sounds have low 
spectral spread

Noise like signals 
usually have large 
spectral spread

Spectral Crest Spectral Spread Spectral Centroid
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Spectral Descriptors TREX
ALUMINUM UXO SHELL

Small deviations in 
spectral content

Moderate deviations 
in spectral content

Energy is centered 
close to 25 - 30 kHz

Energy is centered 
close 10 - 15 kHz

Individual tonal 
sounds have low 
spectral spread

Noise like signals 
usually have large 
spectral spread

Spectral Crest Spectral Spread Spectral Centroid

TREX data is severely impacted by noise



Signal Separation in Time-Frequency
• Subspace array processing for the smoothed pseudo Wigner-Ville distribution

• Signal separation using a large spatial time frequency distribution 
• The cross Wigner-Ville distribution provides a means to compute the coherence of two non-stationary 

signals along both the time and frequency axis
• This is used for consecutive channels where the primary acoustic return is likely to be coherent across a 

small subspace of the array, and noise is more likely to be random and vary per channel
• For a single snapshot of received time series across an array of N receivers, the XPSWVD can be 

calculated for all the pairwise combinations and combined into a spatial time frequency distribution super 
matrix (STFD) given as:

• Here the diagonal becomes the SPWVD for a single channel and off-diagonals are the XSPWVD for 
channel pairs

• Sabra and Anderson [8], [9] propose to apply singular value decomposition to the full STFD matrix to 
support extraction of the signal components from the noise. This approach leverages the notion that most 
of the signal power is confined within the first 𝑛𝑛 principal components with the noise dominating the 𝑛𝑛 𝑡𝑡𝑡𝑡 𝑁𝑁 
components. 
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SPWVD 
Spectrogram

SPWVD 
Spectrogram

SPWVD 
Spectrogram

After 
reconstruction

After 
reconstruction

After 
reconstruction

Difference

Difference

Difference

Structural 
similarity 
index map

Structural 
similarity 
index map

Structural 
similarity 
index map

SVD reconstruction using 1 singular value

SVD reconstruction using 3 singular values

SVD reconstruction using 5 singular values

Reconstruction using 1 
singular value removes 
an excess amount of 
information from the 

spectrum

Reconstruction using 3 
singular value is more 
moderate, removes 

some cross terms, but 
introduces additional 

artifacts

Reconstruction using 5 
singular value is extremely 
similar to 3 SVs. Increasing 
the # of SVs past 3 yields 

very little change in 
outcomes

TREX
ALUMINUM UXO SHELL
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Higher Order Singular 
Value Decomposition for 
the Superlet transform

(HOSVD)
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• Reconstruction using eps = 0.1 is 
too sparse

• Reconstruction using eps = 1e-3 is 
moderate but introduces some 
artifacts in the reconstruction

• Reconstruction using eps = 1e-5 
removes the least signal content but 
artifacts are still present in outcomes

 Shift from super matrix to 3D tensor 
approach

 Eigenvalue decomposition with epsilon 
thresholds set for eigenvalue 
reconstruction [10]

HOSVD reconstruction using epsilon = 0.1

HOSVD reconstruction using epsilon = 0.001

HOSVD reconstruction using epsilon = 0.00001
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Time-Frequency Classification
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Superlet Spectrograms Spectral Descriptors from the Superlet Spectrograms Joint Time Frequency Scattering 
Coefficients

Aluminum Howitzer UXO
Solid Aluminum Cylinder 155 mm Howitzer Original Material 100 mm 

UXO
Hollow Aluminum (Aluminum 

Pipe)
155 mm Howitzer no 

Collar
Solid Aluminum 100 mm 

UXO Replica
155 mm Howitzer no 

Nose no Collar
Solid Steel 100 mm UXO 

Replica

Three groups of time-frequency data representation

Classification tests 
are run on each of 
three categories of 
object type

26 Objects 35 Objects 32 Objects
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Neural Network Classification
Classification of Super Spectrogram and Spectral 

Descriptors
Classification of Joint Time Frequency Spin Up and Spin 

Down Coefficients [11]

Input is 2D
Spectrogram angles selected = −60°, −70°, −80°, −90°

Input is 3D tensor of all 2D coefficients
Time series angles selected = −60°, −70°, −80°, −90° for 

input into JTFS transform

Data split = 70% training, 30% testing Data split = 70% training, 15% testing, 15% validation

14 layers 13 layers

initial learning rate of .012 initial learning rate of .005

L-2 regularization of 6.4530e-9 L2 regularization of .0001

150 epochs for training 150 epochs for training

Cross entropy loss function Cross entropy loss function

25 iterations are run for each aspect angle within a category 
and for each spectral descriptor within a category

25 iterations are run for each aspect angle within a category



Classification Outcomes

20

Spectral Descriptor Classification Results

Superlet Spectrogram Classification Results

JTFS Transform Coefficients Classification Results

 Spectral descriptor classification results are 
overall very poor and the least successfully 
among the three time-frequency dataset 
representations.

 JTFS transform coefficients results are mixed, 
lower scores give low confidence in this 
approach

 Single angle Superlet spectrograms generate 
the highest classification scores among the 
three time-frequency dataset representations

 The aluminum category is consistently highest 
scoring like because there are only two classes

 The UXO category is consistently the lowest 
scoring – this may indicate that characterizing 
material composition among the same 
geometric structure is a more challenging 
problem to the networks
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Interpreting Classification Outcomes
Aluminum UXO Replica – Example with 100% classification rate

Gradient activation weights are higher over times containing primary signal – or 
higher power time-frequency content from the object’s acoustic return

Original UXO Material – Example with 0% classification rate



Conclusions
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 The adaptive Superlet transform provides good time-frequency concentration and frequency 
specificity with higher time-frequency resolution while the smoothed pseudo Wigner-Ville 
distribution provides moderate time-frequency resolution with the best frequency specificity and 
higher resolution at the expense of artifact cross-terms.

 Spectral descriptors over time demonstrate small & large deviations in spectral content, increase 
and decrease of energy with increasing frequency, central frequency, as well as broad and narrow 
bandwidth features. Spectral descriptors over frequency demonstrate angles & times of high and 
low spectral concentration and variation/coherence.

 Initial tests of signal separation using SVD methods in the time-frequency domain are 
inconclusive. Results demonstrate a reduction in signal content with introduction of additional 
artifacts and uncertainty on the optimal thresholds for reconstruction.

 Classification results demonstrate that simple use of the Superlet spectrogram and single angles 
performs better than other time-frequency representations. Gradient activation maps illustrate 
when the object’s acoustic return is of importance and leads to success and when the background 
takes priority and leads to classification failure.



Future Research

Unexpected classification results shift this area of research in a 
different direction –focus on pure time-frequency spectral 
content for TREX & CLUTTEREX data
 Classification approach should be refined to focus the networks on the 

acoustic return of the object of interest and steer away from 
background content
 Could also consider using early time and late time angle slices from a 

time-frequency aspect angle (Superlet) cube for classification input
 For volumetric data (MuST or SVSS), a small study is needed 

to identify the orientation and feasibility of spectrogram 
representation for buried objects
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Questions
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MR23-3982 : Time-frequency Resolution, 
Representation, and Interpretability

Performers: Wendy Newcomb (PI), Alessio Medda (Co-PI), Aprameya 
Satish (Technical Contributor)

Technology Focus
• Develop technologies to classify targets under complex conditions and identify specific types 

of targets; especially in a cluttered environment.
Research Objectives
•  Investigate unexploded ordnance detection, characterization and classification through time-

frequency-aspect angle analysis
Project Progress and Results
• Identified and applied suite of time-frequency transforms optimized for high resolution and 

concentration 
• Applied spectral descriptors to time-frequency-aspect angle underwater sonar field datasets 
• Experimented with subspace array signal separation in the time-frequency domain to try to 

remove undesirable signal and noise
• Completed initial small scale classification experiments across multiple time-frequency data 

representations
Technology Transition
• Fundamental research requiring additional exploration, experimentation, validation, and 

application to buried ordnance datasets before technology transition
26
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Plain Language Summary
 Develop technologies to classify targets under complex conditions and identify specific 

types of targets; especially in a cluttered environment.
 Develop framework for research in time-frequency aspect angle analysis on unexploded 

ordnance, and demonstrate statistical tools and approaches that can provide distinguishing 
spectral information among targets to characterize internal structure and potentially material 
composition

 Current state of the art analysis of frequency spectral returns of targets in acoustic color 
apply the Fourier transform providing perfect frequency resolution and zero time resolution. 
The acoustic wave field return of an object on the seafloor varies over time. Those spectral 
time variations are a function of multipath, environmental conditions, geometrics shape, and 
wave field interactions with the object that are a reflection of internal structure and material 
composition etc. 

 This work extends beyond traditional acoustic color domain analysis of frequency vs. aspect 
angle for an entire time series acoustic return by looking at variations, patterns, and 
correlations that are only visible in the spatial time-frequency domain that may support 
identification of specific types of target that differ in terms of internal structure or material 
composition
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Impact to DoD Mission 

 This is the first SEED project presentation for this work. Providing strong 
sound logic for time-frequency transform selection should dispel concerns 
regarding tradeoffs and challenges with time-frequency distributions. In 
addition, demonstrating statistical methods in the form of well established 
spectral descriptor methods opens up a new area of research in 
unexploded ordnance target characterization and classification, advancing 
the current state of the art in new directions

 Current and historical work in this area has demonstrated the ability to 
classify objects into to classes: natural and man-made objects

 This work is establishing a new analysis space for making headway in 
classification between different man-made objects

28



Publications

Newcomb, W., et al. (2024). “Time-frequency spectral 
optimization of underwater sonar acoustic returns for the 
purpose of characterization using spectral descriptors”. 
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https://acousticalsociety.org/asa-virtual-fall-2024/
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