Data-Driven Decomposition Techniques for Electromagnetic Induction Sensing of Underwater Munitions

Lin-Ping Song, Stephen D. Billings Denver, Colorado April 13-17, 2025

Marine Measurements

Response profile in a marine survey

Outline

Data-Driven Decomposition Methods

- a. Singular Spectrum Analysis (SSA)
- b. Dynamic Mode Decomposition (DMD)
- c. Experiments
- d. Conclusions

Singular Spectrum Analysis (SSA)

Embedding:

Singular Spectrum Analysis (SSA)

Procedure:

 $\widehat{\mathbf{H}}_i = \sigma_i \mathbf{u}_i \mathbf{v}_i^T, \qquad i = 1, 2, \dots, r$

Dynamic Mode Decomposition (DMD)

- 1. Setup Linear mapping
- Split Hankel matrix H

$$\mathbf{H} = \begin{bmatrix} x_1 & \cdots & x_L \\ \vdots & \ddots & \vdots \\ x_K & \cdots & x_{K+L-1} \end{bmatrix} = \begin{bmatrix} \vdots & \vdots & \vdots \\ \mathbf{h}_1 & \vdots & \mathbf{h}_L \\ \vdots & \vdots & \vdots \end{bmatrix}$$

$$\mathbf{Y}_{1} = \begin{bmatrix} \vdots & \vdots & \vdots \\ \mathbf{h}_{1} & \vdots & \mathbf{h}_{L-1} \\ \vdots & \vdots & \vdots \end{bmatrix}$$

$$\mathbf{Y}_2 = \begin{bmatrix} \vdots & \vdots & \vdots \\ \mathbf{h}_2 & \vdots & \mathbf{h}_L \\ \vdots & \vdots & \vdots \end{bmatrix}$$

• Propagation A $Y_2 \approx AY_1$

- 2. Modal decomposition
- Perform the SVD of

$$Y_1 = U\Lambda V^T$$

Construct the low-rank A

$$\widetilde{\mathbf{A}} = \mathbf{U}_r^{\mathsf{T}} \mathbf{Y}_2 \mathbf{V}_r \mathbf{\Lambda}_r^{-1}$$
$$i = 1, 2, \cdots, r$$

• Compute eigen-pairs

$$\widetilde{\mathbf{A}}\mathbf{q}_i = \gamma_i \mathbf{q}_i$$

- 3. Reconstruction
- Compute DMD mode

$$\mathbf{\phi}_i = \mathbf{Y}_2 \mathbf{V}_r \mathbf{\Lambda}_r^{-1} \mathbf{q}_i$$

Compute DMD frequency

$$\omega_i = \ln(\gamma_i)/\Delta t$$

• Set initial state

$$\mathbf{h}_1 = \Phi \mathbf{b}$$

• Compute DMD series

$$\hat{\mathbf{y}}_i(t) = \phi_i \exp(\omega_i t) b_i$$

• Converting into $\widetilde{\boldsymbol{y}}_i$

Detection of Structural Signal

Detection of Structural Signal

Detection of Structural Signal

 $\tilde{\mathrm{H}}2$ $\tilde{\mathrm{H}}3$ $\tilde{\mathrm{H}}1$ $\tilde{\mathrm{H}}4$ SSA Hankelized $\tilde{\mathrm{H}}_{5}$ $\tilde{H}6$ $\tilde{H}7$ $\tilde{H}8$ Elementary Matrices $\tilde{H}9$ $\tilde{H}10$ $\tilde{\mathrm{H}}11$ $\tilde{H}12$ $\tilde{H}13$ $\tilde{H}14$ $\tilde{\mathrm{H}}15$ $\tilde{H}16$

Correlation map SSA components

$$C_{ij} = \frac{\left(\widetilde{\mathbf{x}}_{i}, \, \widetilde{\mathbf{x}}_{j}\right)_{w}}{\left\|\widetilde{\mathbf{x}}_{i}\right\|_{w} \left\|\widetilde{\mathbf{x}}_{j}\right\|_{w}}$$

Separation of TEM signal from structure interference

Separation of TEM signal from structure interference SSA and DMD Components

Separation of TEM signal from structure interference

Separation of TEM signal from strong structure interference

Conclusion

- SSA and DMD techniques aims to decomposes a series into the sum of independent and interpretable components such as a slowly varying trend, oscillations, and a structure-less noise.
- The experiments show that both methods complement each other and are able to consistently capture trends and periodic evolution with frequencies in a series.
- The results demonstrate that, without any prior assumptions, both methods are promising for extracting inherent, hidden dynamics in a noisy response profile and isolating the desired components.

Acknowledgements

This work was supported by SERDP project MR24-4262.

