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Bottom Line Up Front

Areas of substantial progress

= We have developed a new stability criterion for UXO in soils.

= We have demonstrated numerical modeling of trajectory and rotation for
obliqgue impacts.

= Lab is nearly set up for tests with obliquity in water and soils.

= We are ready for a critical milestone test to evaluate the prediction of DOB for
the most common howitzer-launched UXO and vertical penetration.

Areas where progress has been slower than expected
= Lab experiments have been delayed by a breech failure (now repaired).
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Technical Objective

. Obliquity ¢
= Expand upon past success in Air-Water Interface

predicting UXO initial DOB to
scenarios with obliquity and
water overlay.

= Deliver new results in a
format useful to facility
managers.

Water

Water-Sediment
Interface

Sediment
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Technical Approach and Status
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Results to Date

Range Upgrade = Developed Penetration Models

High Strain Rate (HSR) Tests on Soils = Improved GeoPoncelet model
Ballistic Tests = |nstability correction factors

= Effect of Density, W.C., saturation, etc. ) Stra_ltification corre_cti_on factors
= Refined drag coefficients
= Nose shape effects

- L . foct = Generalized GeoPoncelet model
ayering efrects = |ntegrated with localized interaction model

. In§tability effects (LIM) using experimental data
= Centrifuge Tests (planned) = Disseminated results through 11
= FEM Simulations Journal articles and 5 conference
= Clay (verified) papers

= |nstability (verified)
= Water (verification in progress)

= Oblique impact (verification in progress) |mproved DOB predicti()n
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Ballistic Range & PDV Setup
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Ballistic Range Upgrade

Impact obliquities up to 45° are possible
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Ballistic Tests: Density Effect in Sand
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Density is the primary factor affecting DoB
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Ballistic Tests: Saturation Effect in Sand
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Saturation has a secondary effect on DoB
Saturation ¥ high-velocity resistance, 4 low velocity resistance, ¥ DoB
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Ballistic Tests: Nose Shape Effect in Sand
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Sharpness heavily influences |mpact behavior
Has a secondary effect on DoB in dense sands
False nose generation mitigates the effect of nose shape for blunt projectiles

1 & SERDP



Ballistic Tests: Layering Effect in Sand
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The influence of an underlying layer begins before the interface is reached

The extent depends on the thickness of the top layer and the density margin between both layers
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Ballistic Tests: Instability Effect in Sand

Instability greatly affects
DoB

» Long, nose-heavy projectiles are
more stable while short, tail-heavy
projectiles are less stable

= Cones penetrated straighter and
deeper than M107

» DoB is influenced by density

» Tumbling is marked by sharp rise in
deceleration
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Normalized Velocity, v/v,

Ballistic Tests: Water Content Effect in Clay
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DoB is very sensitive to moisture content (« shear strength)
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Ballistic Tests: Instability Effect in Clay
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Softer soils = more rapid expansion

This affects the overturning coefficient
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Ballistic Tests: Instability Effect in Clay

Early onset

Note cavity AOA causes
irr(]evt?/(;t:gsds tail swipe,
e followed by

r projectile
projectile inversion
embedment

Test with Early

M107 in clayey sands are unstable

Increasing w.c. (lower strength) = Instability Final position of

M107 replica
projectile is inverted
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Ballistic Tests: Publications
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Prediction of High-Speed Penetration in
Layered Sand Using Cone Penetration Tests

Stephan Bless, Sc.D.%; and Magued lskandor, Ph.D., P.E., F.ASCE

*Canad\an

Geotechnical
Journal Research Artcle

CPT-informed model for rapid penetration into sand
Joseph Dinotte’, Mehdi Omidvar', Stephan Bless’, and Magued Iskander >
Civland Urbsn Englocering Departme

New York University. 6 Metrotech Center, Brooklyn, NY 11201, USA; Civil and
Manhattan University. 451 . NY 10461, USA

Corvesponding author: Mebdi Omidvar (¢

dvargeanhatts

edu)

Abstract
Results of rapid projectile imy nts ¢ are described, from which a phenomenological penetration model
Is dewloped. Projeales are aunched in a graviy-aligned configuration (o dey and patalysaturaed sand at an |

00ms. technique
Known as photan mwm velacimetry. Soil resistance to penetration s foand by single differentiatian of the velocity-
data, Experiments suggest the existence of & Least (wo penietiation regimes separated by a stress of appeoximately 25 MPa. At
high velocitics, whereas p
rearrangement and localized shear filure. In,.n\c)«m penetraion Is ineffcet; and the majorty ot penetraion accurs st
lower veloities. Saturation reduuces penetr T re u

the nalytic model, which loog ks T ¢ st o ool dircely predict he
Teoporme i depek of batal o pojeclles I sad with Mgk accuse

Key words:
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Résumé

les résultats diessais dlimpact rapide de projectiles sur du ssble sont présentés, 3 prtir desquels un modéle
phénoménologique de pénétration a été élaboré. Les projectiles s lignée avec la gravité
pent saturé, 3 une vitesse d'impact d'envir emps de la p
tion cst obeenu 4 Iaide d'une technique de mesure optique appelée wlociméeric Doppler photonique (PDV), La résistan:
mple des données vitesse-temps. Les expériences suggérent
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larly in extraterrestrial soils (Locenz ct 3l 1994: Zelikson etal.

2000; Hearst and Lynch 2000:Kormle et al. 2000; Lo

N ToiT

i

P

Calibration of the GeoPoncelet Penetration Model for
Conical Rod Projectiles in Cohesive Soils
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Vertical Projectile Launcher for Study of Rapid Penetration into Soil
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Abstract
The majority of ballistic experiments in granular media in the lirerature involve boeizoatlly ieching peojectilcs. Not-
withstanding the significant scicatific findings resulting from these sudies, the depih-dependence of geosatic stresses is
w0t cptarod in  borizcatal conligaretion. The daign sed performmace of» verical bellstic raage s deseibod herc,

g rcile  npect pedsof 10900 s s ol gets. A phevisr s cupled
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Introduction and Background

Several launcher designs hve heen explored and doc
i the literature [4 i
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HSR Tests on Soils
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New Method for Quantifying High Strain Rate Effects in Soils

High-rate loading frame data can be better understood by correcting for the ~_""=
inertia of the machine.

18 | & SERDP



19

HSR Effects in Sand
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Strength of sands elevated at HSR, more significant in
dense sands under high confinement
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HSR Effects in Clay
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In cohesive soils rate effects are significant
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Centrifuge Tests (Planned)

= Tests to be conducted at
NYU facility in Abu Dabi in
Fall 2025.

» Goal: show that
geoPoncelet approach
works at larger scale that
might be affected by
higher geostatic stresses.
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Abaqus/Explicit Analysis

= Coupled Eulerian-
Lagrangian approach

» User-defined constitutive
models for clay and sand,
considering:

» Strain rate effects
» Strain softening effects
= Comparisons with data
now give us confidence in

the accuracy of these
simulations.

22

8.45cm

el

8.45cm

6.48 cm

Defence Technology 0k (x06) 0.

DEFENCE

Contents lists available at ScienceDirect TECHNOLOGY

Defence Technology

journal ww

Calibration of empirical penetration models using large deformation
explicit finite element simulations of rapid penetration in clay

Boules N. Morkos ?, Rachel White °, Mehdi Omidvar

1 Tandon ol ofEnieeing ook, VY 1201, U
© Manhattan Universy, Riverdale, NY, 1

b, Magued Iskander **

ARTICLE INFO ABSTRACT
Arice st Numerous former military sites worldwide require environmental cleanup from buried unexploded
Receved 15 ugus 2024 ordnance (Ux0) that pose hazards such as leaching toxic chemicals and explosion risks. How

selecting lh: appropriate mitigation redmo!ogy relies on prior knowledge of UxO depth of bun-\l (DGB)
i s s » b o o

olordnmces into clay odified
ey esures of lay blavioe e bigh s

rate (st) loading, The role of various pa-

ords
i rameters or of the soil. The
Projectle ndinge Mgt the poremount mportance ofundsined shea srength i v sofl pochabiy. m
aay addition to the role of soil stiffness, and density. The simulations were employed to calibrate model
Tresca parameters for Young's empirical penetration model, as well as the Poncelet phenomenological pene-
ABAQUS tration model, demonstrating the efficacy of the numerical simulations in extrapolating its findings
cu within the relevant parameter space. In particular, the calibrated parameters of Young’s and Poncelet’s
models can be identified as a direct function of the various discussed soil properties, which was pre-

viously unavailable.
© 2025 China Ordnance Society. Publishing services by Elsevier BV. on behalf of KeAi Communications
Co. Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
Ticenses/by-nc-nd/4.0)).
1. Introduction technique selection and reduce the need for overly conservative

Projectile penetration into soils has broad scientific and engi-
neering applications. The primary focus of this study is predicting
the depth of burial (DoB) of unexploded ordnance (Ux0) at
Formerly Used Defense Sites (FUDS) used for munition develop-
ment and testing. These UXO pose substantial risks, as
construction-related excavation can trigger explosions, and toxic
chemicals may leach into the soil and groundwater.

Techniques for detecting the DoB of UXO in terrestrial soils
include airborne sensors, seismic systems, synthetic aperture radar
(SAR) d ing rada and i Each

of these methods has specific depth limitations, making prior es-
timates of DoB essential for selecting an appropriate detection
technology. Accurate initial depth predictions can optimize

* Corresponding author
il adress: Iskander@nyu edu (M. Iskander)
Petrein ndes e repansilyofChinOrdaee Socety.

ps:doLorg/10.1016/1£ 2025.03.021

safety margins in excavation planning, thereby resulting in time,
cost, and resource savings during cleanup and remediation efforts.
n can be based on empirical, semi-empirical, or
numenca] models Empirical models are derived from experi-
mental d model for larg
p:nerm(mn was developed by Young [1-3] through extensive field
and laboratory testing. Young's equations predict terminal pene-
{ration depth 35 2 functon of il and projecte parameters
Semi-empirical models, o phenomenological models, employ
‘mathematical expressions to describe projectile penetration while
capturing complex behaviors through calibrated parameters. His-
torically significant models in this approach include Robins-Euler
[4]; Resal [5]; Petry [6]; and Poncelet [7]. The widely used Ponce-
let model relies on experimentally fitted constants including a
constant bearing resistance and a drag coefficient for i
resistance. Later studies [3-10] introduced v
resistance terms, refining burial depth predictions and projectile
velocity-penetration behavior. Notwithstanding these improve-
ments, the consolidation of complex physical phenomena during

2214.9147/0 2025 L. Th BYNC
D license (hitp:/creativecommons.org/licenses by-nc-nd/4.0]).
Please cite this article as: B.N. Morkos, R. White, M. Omidvar et aL, ]

finite element simulations of rapid penetration in clay, Defence Tedmnlaxy, htps://doi.org/10.1016/;.dt.2025.03.021
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FEM Simulations: Instability in Clay
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FEM Simulations: Penetration in Clay

(11% WC Clayey Sand)
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FEM Simulations: Penetration in Clay

(13% WC Clayey Sand)
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FEM Simulations: Penetration in Clay

(15% WC Clayey Sand)
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Oblique impact of M-107 (in progress)
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Water Impact Phenomena

No fins With fins

$®SERDP




Water Impact Simulation
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Penetration Model Development

MR19-1277 Stable
GeoPonceIet
N ormal with Empirical
Impact Corrections J

Unstable

Experiments

Oblique

Impact Framework
FEM Simulations
Experiments

Water 6DoF

Penetration E K

FEM Simulations ramewor
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GeoPoncelet (GP) Model

Viv1 =V —

Where:

v : projectile velocity
m : projectile mass

p : soil density

g = C1piVi + 8l iGeir @i 2 Ger
YOG+ 00T i @ < Ger

7, =1+ pulog v/D A :projectile area
(v/D)cpr g, : CPT stress at a depth z
) Az : penetration depth increment
Geo Poncelet Accounts for Crushing C, : crushing drag coefficient

* Incremental implementation to
account for depth dependent

C, : rearrangement drag
coefficient
4. - crushing transition stress

parameters bearing st X
) N : . : bearing stress nose shape
« Variable projectile X-sectional f ; J P
area during impact SLCE LT T ; " ct)>rearing stress rate factor
« Use of in-situ cone tip stresses 1 : Rate strengthening coefficient

« Piece-wise drag implementation
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GeoPoncelet Model Demonstration: Sand
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The model can describe penetration data with high fidelity
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GeoPoncelet Model Demonstration: Clay

T Clayey Sand T 151
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The model can describe penetration data with high fidelity
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GeoPoncelet Model for Layered Sand
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Model Instability Correction Factors for

Relative Density

= = Data B
= GeoPoncelet 1.0 B DOBmeasured

- n
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Empirical correction factor n corrects for decreased DoB

n is influenced by both density and L/D
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0.6
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Length-to-diameter (L/D) ratio identified is key stability parameter
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Abaqus Correctly Computes Poncelet

Parameters: Drag

5 _
w.c. =11% i w.c. =13% i w.c. =15%
— Experiment 1 — Experiment | — Experiment
4 H —— Abaqus i —— Abaqus N —— Abaqus
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Excellent Match between experimental & numerical results
High-speed, drag-dominated penetration
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Abaqus Correctly Computes Poncelet

Parameters: Bearing

L w.e.=11% | w.c. =13% | w.c.=15%
- = Experiment - = Experiment - = Experiment
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15—
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Excellent Match between experimental & numerical results
Low-speed, strength-dominated penetration
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6DoF UnUXO Model (Water)

Equation of Motion
(Translational Motion)

dV—F + F
mdt_ d l

1 2
|Fql = ECdeAV

1 2
|Fy| = 5 Cipw AV

2
' Where:
J F4: Drag Force
6DoF model accounts for global Fy: Lift Force
. . C,: Drag Coefficient
drag, lift, and torque, in water

C, : Lift Coefficient
39

Moment of Momentum
Equation
(Rotational Motion)

dQ

—=M
T

1
M| = 2 Crnpyy LAV

Where:

J: Projectile gyration tensor
Q: Projectile angular velocity
M: Torque on Projectile

C. Torque Coefficient
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LIM UnUXO Model (Soil)

Equation of Motion Moment of Momentum
Equation
dVv )
- #(an + o)A M= #T(Gn +0,)dA

In soils, the localized interaction model (LIM)
computes resultant stresses by integration of
stresses on differential areas.
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4

LIM Model Applied to Rectilinear
Project Ballistic Data (1D motion)

Projectile Impact Velocity
Nose Apex Angle (a) Vo (m/s)

Test ID

PDV50

PDV53
PDV54

PDV51

30° Cone
60° Cone
90° Cone
120° Cone
Blunt

201.4
202.7
203.1
203.5
199.6

Parameters

Cc R (MPa)
14 3.0
21 1.7
21 1.5
2.0 1.6
2.0 1.5

Initial implementation is in 1D to be
followed by 3D to predict a more
comprehensive trajectory
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LIM Performance (1D)

2001 ---Data || === Data |'[ === Data | - = = Data
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Penetration, p [m] Penetration, p [m] Penetration, p [m] Penetration, p [m] Penetration, p [m]

LIM captures experimental data with good fidelity for a variety of cone angles
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Next Steps (for next 12 months)

= L aboratory experiments for calibration of trajectory instability models.
= Water
* Transparent soils
= Sands and clays

= Comprehensive set FEM simulations for calibration of instability models and
behavior at interfaces.

Development of UnUxO-Impact model to incorporate both GeoPoncelet and LIM
model features.

Centrifuge experiments to investigate scaling.

Interim progress report: August 2025.

Milestone 1 demonstration field test: Summer 2026
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Technology Transfer

= We are working with US Army
ERDC-GSL, Vicksburg MS and U.S.
Army Engineering and Support
Center, Huntsville to carry out a field
test demonstration and present
results in a form amenable to
implementation by site managers.

= 11 Journal publications to date
= 5 Presentations at conferences

= \Web tool for stochastic assessment
of site variability + user guide
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= Laboratory work is behind schedule due to need for breech repair.

= DoD funding has been late forcing NYU to issue risk accounts twice so far.
This has also affected staffing.

= Model development relies on field verification (Milestone 1). SERDP
directed us to apply to ESTCP Demonstration of Munitions Response
Technologies for Underwater Environments at Live Sites per ESTCP FY
2026 Solicitation (Released Jan 7, 2025), which we did. If approved, the
schedule will be 12 months later than we had anticipated in the original
contract schedule. For this reason, we may need a no cost extension.
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Thank You

£ iskander@nyu.edu
& sbless@nyu.edu
9. omidvar@manhattan.edu

£ pcchu@nps.edu
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BACKUP MATERIAL

These charts are required, but will only
be briefed if questions arise.




UnUXO High Speed Model: Water Impact

Drag, Lift, and Torque Coefficients as functions of Reynolds Number (R,) and AoA (a)

1 2
|Fql = E Capw AV

2 R 0.2
C, = 0.02 + 0.35¢2(@="/2) (R—e) + 0.008Qsin(6)

e

1 2
|Fy| = EClpWAV

R 0.2
0.35sin(6,) <—i)
Re
Cl - 5
R,
0.1sin(6,) — 0.0150Q (IF) sin(gg.SS) ’

e

S

R

IA

\%
N NS

1
0 = sign(w — 2a)(n%? — (1 — |m — 2a|)*?)22Z

2a
T

0.7

2a 1.8
01 = 77,-(_)
s

VD
R, = - — Reynolds Number
R; = 1.8x107 — Critical Reynolds Number

1
IM| == Cnpy LAV

0.2

R\ T

0.07 sin(2a) (—e) ,a < —

_ R; 2

Cm - R 0.5 T
0.02sin(2a) (—e) a>—

R;) 2

Based on 1/4,-scale Mk84 bomb

tests at impact velocities of 305
m/s. New functions are being

developed for M107 and Cones.
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Two UnUXO High Speed Soil Penetration Models

Localized Interaction Model (LIM)

Sediment Resistant Stress on Projectile’s

Physical Surface

sin(gj
m&=| C pi? 2 +RJ[1+/;f cot(%D A(P)
+k_/. cos(%j

Poncelet Model

Sediment Resistant Stress on Projectile’s
Projected Surface

P

A(P):AO(F

2
j P<P,
C

A(P)=4,  P>P,

—mi—lt/ =[Cp* +R]AP),
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Inertial Drag Coefficient — Velocity Dependent

and for All the Five Cases

Friction Coefficient kf=0.55, Resistance Coefficient R0=1 .5[MPa]

got N 10-0.4167V, V<12
I - C_=:6.0326-0.0.086V, 12<V_<55
e 0.9434+0.0065V, 55<V,
G V. :V\/cos,B+kf sin [
i Using modified velocity, drag can
O be computed for any nose shape

00 120 140 1
Modified Velocity V(7 (m/s)
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23-3855: Depth of Burial of

UXO in Estuary Environments

Performers: M. Iskander (NYU), S. Bless (NYU), M. Omidvar (MU),
P. Chu (NPS)

Technology Focus
* Detection of UxO in FUDS

Research Objectives
* Develop a refined penetration model in soils and water that accounts for site specific
conditions, including obliquity, AoA, and soil conditions

Project Progress and Results
* Model is now able to account for soil properties, instability, and projectile nose shape

Technology Transition

»  We are working with US Army ERDC-GSL, Vicksburg MS and U.S. Army
Engineering and Support Center, Huntsville to carry out a field test demonstration
and present results in a form amenable to implementation by site managers.

Air-Water Interface

Water

Obliquity ¢
YAOA

Water-Sediment
Interface

Sediment
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Plain Language Summary

= The first step in remediation of hazards from buried Unexploded
Ordnance (UxO) requires estimates of initial depth of burial (DoB). This
is true for both terrestrial and underwater environments. A validated

method for predicting DoB for UxO that may be deeply embedded does
not exist.

= The research seeks to develop a method for accurate prediction of the
DoB of UxOs based on laboratory tests and validated FEM
simulations. The method employs site-specific field measurements of
actual soil conditions and accounts for stochastic site variability.

= This work will contribute to a more efficient and cost-effective

remediation of sites contaminated with UxO, thus facilitating their
transfer to civilian use.
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Impact to DoD Mission

Extensive data has been collected on projectile

trajectory and instability in soils.

The GeoPoncelet model is now able to account
for projectile instability using an empirical
stability criteria

Projectile instability can reduce the DoB by up to

60, thus the new model yields far more realistic
DoBs.

This work will facilitate more effective and cost-

efficient cleanup of FUDS.

(a) Projectile trajectory from
lab-scale ballistic test in
clayey-sand. (b) Projectile
trajectory and cavity from —
simulated ballistic experiment

in clayey-sand

o
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= None.
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Status of Funds for Federal Performers

» Report on the status of funds for each MIPR received by a directly funded Federal
performer. Provide information on each fiscal year for which there has not been 100%

expenditure of funds. If you or your co-performer do not understand how to fill this out,
contact your Program Manger in advance of the IPR.

FY20XX Funds

Directly Funded Federal

Funds Percent Funding
Performer(s) Obligated* Obligated

Funds Received

Federal Performer A
- Direct Cite MIPR

Federal Performer A
- Reimbursable MIPR

Federal Performer B
- Direct Cite MIPR

Federal Performer B
- Reimbursable MIPR

* Funds put on contracts and/or purchase orders that have been issued, and funds

56 associated with internal labor or travel expenses that have been incurred. %SERDP
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Publications: Journals

2025

Mercurio S, Iskander M, Omidvar M, and Bless S (2025) “Calibration of the GeoPoncelet penetration model for
conical rod projectiles in cohesive soils, In press, J. Geotechnical & Geoenvironmental Engineering, ASCE.

Dinotte J, Iskander M, Ads A, Bless S, Omidvar M (2025) “Use of hydraulic systems for high-rate compression
testing,” https://doi.org/10.1007/s40799-025-00802-8, Experimental Techniques, Springer

Dinotte J, Omidvar M, Bless S, Iskander M (2025) “CPT-informed model for rapid penetration into sand,” In
press, Canadian Geotechnical Journal, dx.doi.org/10.1139/cgj-2024-0581

Morkos B, White R, Omidvar M, and Iskander M (2025). “Calibration of empirical penetration models using large
deformation explicit finite element simulations of rapid penetration in clay.”
https://doi.org/10.1016/j.dt.2025.03.021, Defense Technology, Elsevier.

Morkos B, Iskander M, Omidvar M, and Bless S (2025) “From Battlefield to Building Site: Probabilistic Analysis

of UXO Penetration Depth for Infrastructure Resilience.” Applied Sciences, 15(6), 3259;
https://doi.org/10.3390/app 15063259, MDPI.

Omidvar M, Dinotte J, Giacomo L, Bless S, Iskander M (2025) “Prediction of High-Speed Penetration in Layered
Sand using Cone Penetration Tests,” J. Geotechnical & Geoenvironmental Engineering, Vol. 151, No.1,

https://doi.org/10.1061/JGGEFK.GTENG-12760
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Publications: Journals Cont.

2024

Mercurio S, Grace D, Bless S, Iskander M, and Omidvar M (2024) “Frequency-shifted photonic doppler
velocimetry (PDV) for measuring deceleration of projectiles in soils,” Acta Geotechnica,
https://doi.org/10.1007/s11440-024-02252-9, Springer Nature.

Mercurio S, Bless S, Omidvar M, and Iskander M (2024 ) “Deceleration of projectiles in sand,” Acta
Geotechnica, https://doi.org/10.1007/s11440-024-02408-7, Springer Nature

Giacomo L, Grace D, Omidvar M, Bless S Iskander M (2024) “Vertical projectile launcher for study of rapid
penetration into soil targets,” https://doi.org/10.1007/s40799-024-00732-x, Experimental Techniques, Springer
Nature.

Omidvar M, Dinotte J, Giacomo L, Bless S, Iskander M (2024) “Dynamics of sand response to rapid penetration
by rigid projectiles,” Granular Matter, https://doi.org/10.1007/s10035-024-01440-4, Springer Nature.

Omidvar M, Dinotte J, Giacomo L, Bless S, and Iskander (2024) “Photon doppler velocimetry for resolving
vertical penetration into sand targets,” https://doi.org/10.1016/j.ijimpeng.2023.104827, J. of Impact Engineering,

Vol. 185, 104827, Elsevier
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Publications: Conference Papers

2025

Dinotte J, Giacomo L, Mercurio S, Omidvar M, Bless S Iskander M, (2025) “High-Speed Ordnance Penetration into Stratified Sandy
Soils,” In: V. Eliasson et al. (eds.), Dynamic Behavior of Materials, Volume 1, SEM24 Conference Proceedings of the Society for
Experimental Mechanics Series, https://doi.org/10.1007/978- 3-031-85829-1_8, Springer Nature Selected as the best paper in the
Dynamic Behavior of Materials track of the 2024 Society for Experimental Mechanics Annual Meeting.

2024

Giacomo L, Dinotte J, Omidvar M, Bless S Iskander M, (2024) “An Investigation of Projectile Instability during Ballistic Penetration into
Sandy Soils,” Accepted, SEM24: Society of Experimental Mechanics Annual Conference.

Dinotte J, Giacomo L, Bless S, Iskander M, Omidvar M (2024) “Nose shape effects from projectile impact and deep penetration in dry
sand”. In: Eliasson, V., Allison, P., Jannotti, P. (eds) Dynamic Behavior of Materials, Volume 1. SEM 2023. Conference Proceedings of
the Society for Experimental Mechanics Series, pp 49-59, Springer, https://doi.org/10.1007/978-3-031-50646-8 7

Mercurio S, Bless S, Ads A, Omidvar M, And Iskander M (2024) “Rate dependence of penetration resistance in a cohesive soil.” In:
Eliasson, V., Allison, P., Jannotti, P. (eds) Dynamic Behavior of Materials, Volume 1. SEM 2023. Conference Proceedings of the
Society for Experimental Mechanics Series. Springer, pp 23-31,. https://doi.org/10.1007/978-3-031-50646-8 4

Morkos B, White R, Omidvar M, Iskander* M and Bless S (2024). “Numerical Simulation of High-Speed Penetration of Munitions in
Clay.” GSP No. 352, GeoCongress 2024 Geotechnical Data Analysis and Computation, pp. 82-91,
https://doi.org/10.1061/9780784485347.009, ASCE
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Acronym List

* AoA — Angle of Attack

* CPT — Cone Penetration Test

+ ERDC-GSL — USACE Engineer Research & Development Center, Geotechnical & Structures Laboratory,
* DoB — Depth of Burial

* DoF — Degrees of Freedom

« ERDC - (U.S. Army) Engineer Research and Development Center (Vicksberg, MS)

» FUDS - Formerly used defense sites

* NPS - Naval Postgraduate School

* UnMES - Underwater Munition Expert System

+ USACE - US Army Corps of Engineers

* USDA-NRCS — US Department of Agriculture National Resources Conservation Service
* UxO - Unexploded Ordnance
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