

Optical Detection and Classification of Military Munitions Underwater

MR23-9001

Drs. Darin Knaus and Chris McKenna

Creare LLC

In-Progress Review Meeting

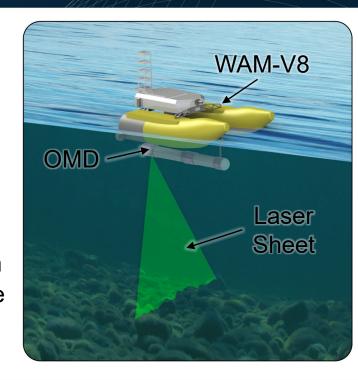
August 13, 2025

Project Team

Creare LLC

Dr. Darin Knaus Dr. Chris McKenna Creare LLC

Mr. Jed Wilbur Creare LLC



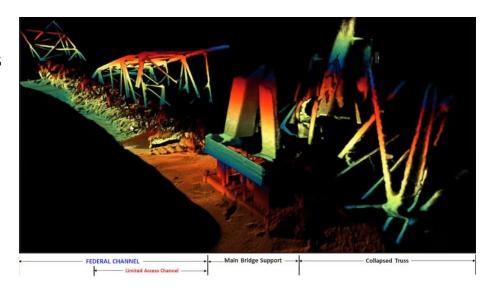
Dr. Jules Jaffe Scripps

BLUF: Creare Optical Munitions Detector (OMD)

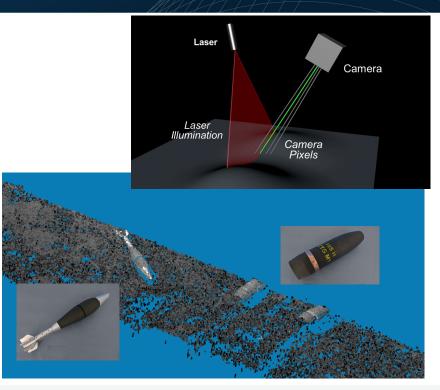
- We are Evaluating an OMD for Optical Detection and Classification of Unexploded Ordinance (UXO) in Shallow Water
 - ➤ OMD is deployed underwater
 - Keel of unmanned surface vehicle (USV)
 - Unmanned Underwater Vehicle (UUV)
 - Human-operated vehicles
 - ➤ The OMD demonstration test will establish and demonstrate the performance of optical detection
 - ➤ We have developed an optimized OMD prototype for the demonstration test
 - >We have developed a test plan

Problem Statement

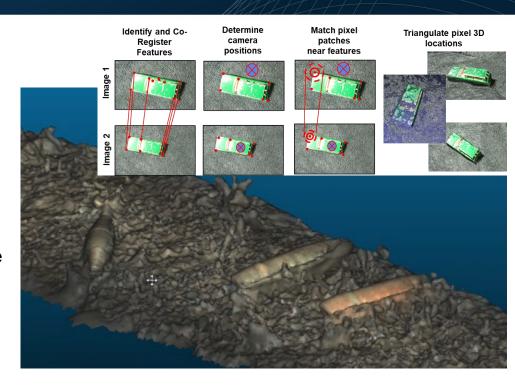
- Many DoD sites have shallow-water UXO contamination
- Recreation often occurs in shallow waters (swimming, fishing)
- Exposed munitions are a particular concern
 Highest likelihood of interaction with public

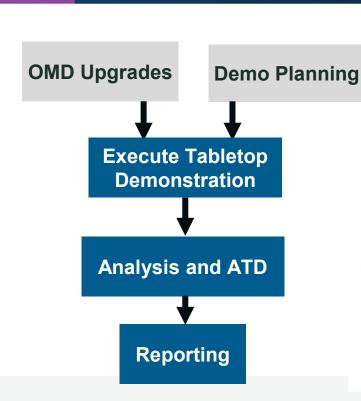


Technical Objective

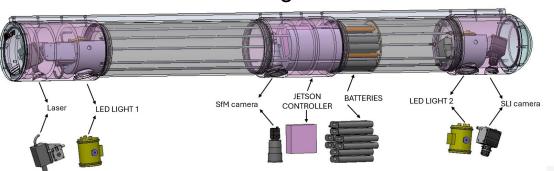

- Existing Methods for UXO Detection and Classification have Gaps
 - ➤ Acoustic and electromagnetic methods
 - ➤ Limited resolution and ability to detect targets against background clutter
- Optical Detection
 - ➤ High resolution
 - ➤ Preserves optical contrast, color, size, and shape
 - ➤ Optical images are naturally intuitive
 - Well suited for automatic target detection (ATD)

OMD Technical Approach: SLI


- Current OMD Applies Two Optical Methods
 - ➤ We may down-select in the future to one method
- Structured Light Imaging (SLI)
 - > Also known as laser scanning
 - ➤ Laser line "painted" on bottom
 - ➤ 3D point cloud triangulated by offset camera
 - ➤ Provides high-resolution 3D point cloud
 - Monochromatic (no color)


OMD Technical Approach: SfM

- Structure from Motion (SfM)
 - ➤ Second 3D imaging method
 - ➤ Bottom is illuminated using a white light and imaged from multiple views as the vehicle moves
 - ➤ Features in subsequent images are registered to triangulate 3D locations
 - Requires knowing the relative position of the camera in each image
 - Produces high-resolution 3D image of the bottom
 - > Preserves color and contrast
- SLI and SfM use Different Cameras and Illumination



Project Technical Approach

OMD Upgrades

- Complete redesign and analysis for demonstration test
- ➤ Cameras, illumination, enclosure, power/thermal management, SBC
- Demonstration Planning
- ATD: Automatic Target Detection

Results to Date

OMD Upgrades

- ➤ Components: Acquired, Unit Testing Begun
- ➤ Electrical System: Design Complete and Components Acquired
- ➤ Mechanical Design: Acquired

Test Planning

- ➤ Visited Site in January 2025
- ➤ Testing Planned for Coconut Island Hawaii in Early 2026
- ➤ Draft of Test Plan Submitted

Results to Date: Component Selection

Cameras

SLI Camera (FLIR)

- High Speed (162 Hz)
- Monochrome, 5 MPx

SfM Camera (FLIR)

- Low Speed (1 Hz)
- High Resolution (24 MPx)
- Color

Computation

Jetson Orin AGX

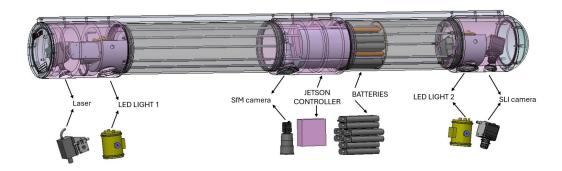
- High Speed USB and Ethernet for Image Grabbing
- M.2 Port for High-Speed Image Saving
- Powerful CPU and GPU for on board processing

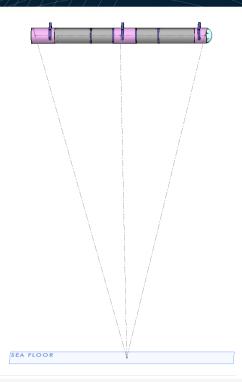
Illumination

Osela Industrial Line Laser

- High Power (3 W)
- Excellent Wavelength for Ocean Transmission (450 nm)

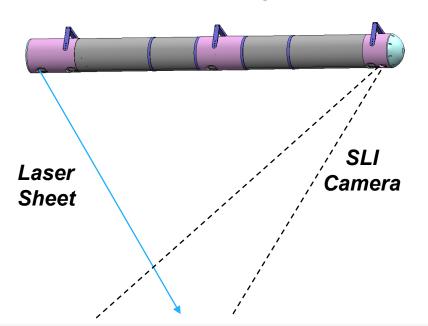
Constellation 120 E (2x)

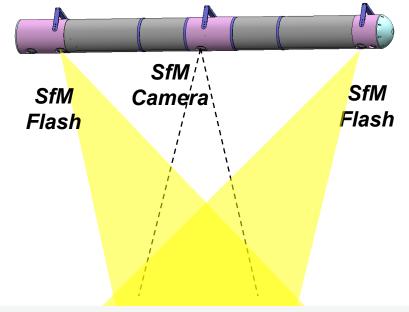

- Short Flash Duration (< 1 μm)
- High Luminous Flux (> 22,000 lm)



OMD System Configuration

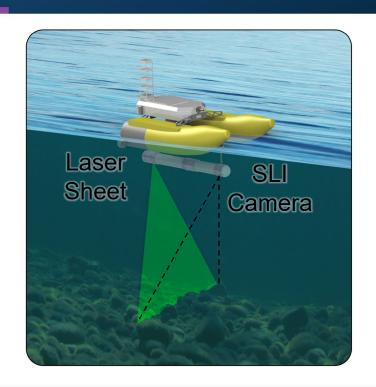
- OMD Packaged in a Cylindrical Enclosure
- Three Modules
 - ➤ Aft module contains SLI laser and SfM flash
 - ➤ Middle module contains SfM camera and processor
 - Fore module contains SLI camera and SfM flash

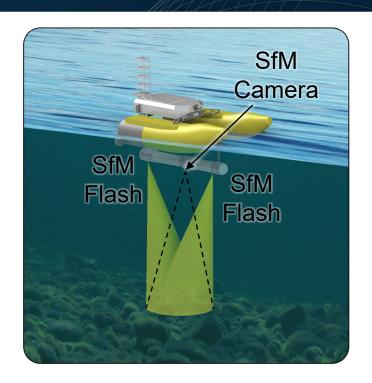




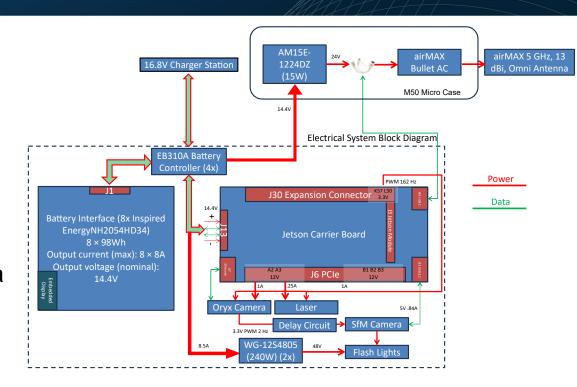
OMD Optical Configuration

SLI Optical Configuration




SfM Optical Configuration

OMD Optical Configuration



Electrical Design

- Integration with ARL RTK GNSS
 - ➤ Connect to rover GPS
 - Same system used for ground truth
 - ➤ Offset integrated into position
- Control
 - ➤We'll control the system with a wireless router recommended by ARL

Demonstration Test Planning (1)

- Baseline plan is to test at the UXO
 Test Bed Site Coconut Island
 Hawaii
 - Calm sea state
 - Clear water
 - ➤ Best case for optical
- WAM-V Autonomous Surface Vehicle
 - ➤ OMD mounted on submerged 8020 frame
 - ➤ Operated by ARL during test

Demonstration Test Planning (2)

- Requested munition deployment sizes for the engineering test are 20 mm, 40 mm, 60 mm, 81 mm, 105 mm, and 155 mm
- Control zone to include all munition types and clutter objects, locations shared with Creare
- Blind zone to include all munition types and clutter objects, locations help from Creare

Parformance Objectives

Performance Parameter	Test Success Criteria		
Bathymetric Resolution and	• > 62,500 pts/m ²	•	

Usable Bathymetric Area

Detection of Emplaced Objects

Classification of Detected

False Alarm Rate Estimate

Area Coverage Rate

Location Accuracy

Objects (TOI vs. clutter)

Point cloud coverage for > 80% of area surveyed for water

depths 2.3-5.8 m

> 75% prob. of detection within 1 m (≥ 40mm) inside a

region where point cloud is generated

> 60% prob. of detection within 1 m (≥ 20 mm) inside a

region where point cloud is generated

 > 85% correct classification of detected TOI's (≥ 40 mm) > 75% correct classification of detected TOI's (≥ 20 mm)

• < 1 false alarm per 3,000 m²

• $> 3000 \text{ m}^2/\text{hr}$

Relative average distance between objects accurate to

within 1 m

• > 75% of relative distances between objects accurate to within 0.5 m

 $> 62,500 \text{ pts/m}^2$ Point cloud coverage for > 95% of area surveyed

for water depths 1.9-6.1 m

• > 95% prob. of detection within 1 m (\geq 40 mm) inside a region where point cloud is generated

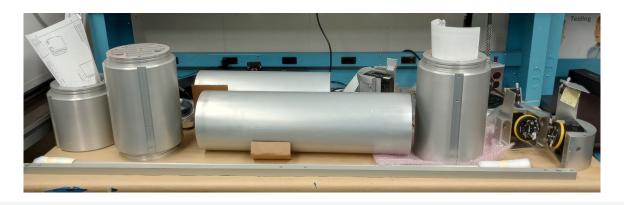
> 90% prob. of detection within 1 m (≥ 20 mm)

• < 1 false alarm per 10,000 m²

inside a region where point cloud is generated > 95% correct classification of detected TOI's

System Success Criteria

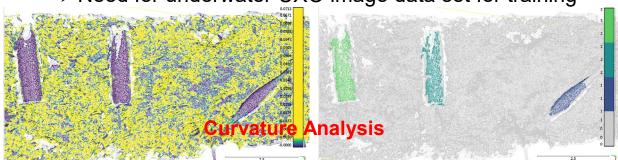
(≥40 mm)

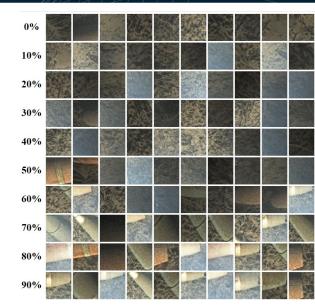

 > 90% correct classification of detected TOI's (≥20 mm)

• $> 4000 \text{ m}^2/\text{hr}$ Relative average distance between objects accurate to within 0.5 m. > 75% of relative distances between objects

Next Steps

- Build and Test Prototype OMD
- Execute Demonstration Test
- Data Analysis
 - ➤ Automatic Target Recognition


Why Two Imaging Modalities?


- SfM maintains color information and may be more useful for many missions
 - ➤ But is more sensitivity to water clarity due to incoherent illumination
 - ➤ Also is more computationally intensive
- SLI works better in turbid water
 - ➤Will function over a wider range of real-world conditions
 - > Fast and less computationally intensive
 - ➤ Better spatial resolution (~1 mm depending on depth)
- The Demonstration Test Will Allow us to Compare Methods Head-to-Head

Automatic Target Detection (ATD)

- Image Data are Well Suited for ATD
 - ➤ Different ATD methods for SLI and SfM
- SLI Data can be Analyzed for Curvature
- SfM Images Well Suited for DCNN ATD
 - > Requires training set for DCNN
 - ➤ Need for underwater UXO image data set for training

DCNN Probability "Man Made"

Technology Transfer

- Endpoint of Current Project
 - >OMD demonstration in controlled/optimal conditions
- Next Steps
 - ➤ Field testing at site with real UXO
 - >OMD revisions
 - -Down-select optical method
 - ➤ DCNN analysis
 - —Develop training set

Issues

- Additional funding required to assemble and test prototype
- Delays in scheduling the demonstration test site location and date

BACKUP MATERIAL

MR23-9001: Optical Detection and Classification of Military Munitions Underwater

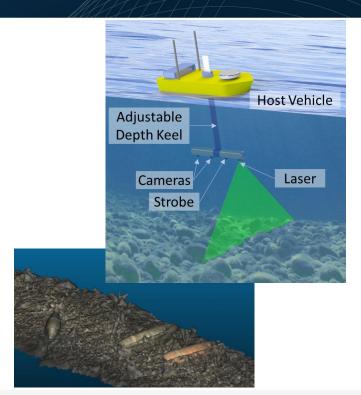
Performers

- Dr. Darin Knaus and Chris McKenna. Creare LLC
- Dr. Jules Jaffe, Scripps Institute of Oceanography

Technology Focus

- We are developing and demonstrating an optical method for detecting UXO underwater
- Optical methods are well suited for automated detection methods but are also subject to water turbidity/clarify and can only see exposed UXO

Research Objectives

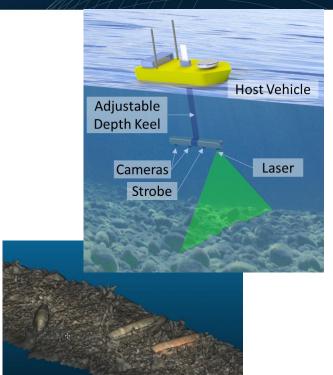

- The goals of the current program are to revise the OMD design and develop a new prototype suitable for a demonstration test
- Then, we will execute a demonstration test at UXO test site
- Finally, we will use the data collected to develop and demonstrate automated target detection (ATD) methods

Project Progress and Results

- Developed optical model of the OMD
- Selected upgraded OMD components
- Developed an integrated OMD system design

Technology Transition

Next steps include field testing and OMD enhancements


Plain Language Summary

- The Optical Munitions Detection (OMD) technology can be used to systematically locate underwater UXO for mitigation or removal
 - ➤ Based on autonomous vehicles and automatic target detection (ATD) for rapid detection and analysis
- Our approach is optically-based and differs from conventional UXO detection methods
 - ➤ High resolution 3D data with color and contrast
 - ➤ Well-suited for advanced image ATD methods such as Deep Convolution Neutral Network (DCNN) methods
- If successful, the OMD technology will provide a new tool for underwater UXO mitigation

Impact to DoD Mission

- Many Current or Former DoD Sites Contain Underwater UXO are a Hazard to the Public
 - ➤ Conventional technologies and methods for UXO detection do not translate well to underwater UXO, or are very labor intensive/time consuming
 - We are developing a new technology for optical underwater UXO detection
 - ➤ The technology will enable automated detection using autonomous surface vehicles and AI methods for image analysis
 - ➤ The outcome will be a new tool for efficient mitigation of underwater UXO from DoD sites

Action Items

 Demonstration Plan 	Submitted	6/15/2025
 July 2025 QPR 	Submitted	7/15/2025
 July 2025 MFR 	Pending	8/15/2025
 Data Quality Metrics 	Pending	9/30/2025
 Curvature Uniformity 	Pending	9/30/2025
• DCNNs	Pending	9/30/2025
 Algorithm Train and Test 	Pending	9/30/2025
 October 2025 QPR 	Pending	10/15/2025
 Final Report 	Pending	2/20/2026
 High Level Summary 	Pending	3/20/2026
Stakeholder Presentation	Pending	3/20/2026
 Worksheet 22 	Pending	3/20/2026
 Lessons Learned 	Pending	3/20/2026
Technology Guide	Pending	3/20/2026
 Critical Findings Sheet 	Pending	3/20/2026

Publications

None to date

Acronym List

UXO Unexploded Ordinance

OMD Optical Munitions Detector

SLI Structured Light Imaging

SfM Structure from Motion

■ DCNN Deep Convolution Neural Network

ATD Automatic Target Detection

ASV Autonomous Surface Vehicle

