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Bottom Line Up Front

▪Adapting alternative acoustic image reconstruction techniques to 
the munition detection problem.

▪ Initial algorithm development through simulation has worked well.
▪ SERDP’s investment in sonar scattering models aided this program.

▪Computational intensity of simulation and reconstruction has 
slowed progress.
▪ Problem is pushing boundaries of models for seafloor scattering.  

▪Solutions are in place to keep project on track.
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Technical Objective

Advances in biomedical ultrasound imaging have used spatial 
coherence for improved contrast, speckle rejection, and resolution.

1. Adapt coherence-based reconstruction for munitions surveys to improve 
image quality and aid detection and classification.

2. Quantitatively and qualitatively assess image quality with field data, 
comparing to conventional reconstruction.
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Technical Approach
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Motivation: UXO sonar surveys
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Observing target shape is hindered by strong background and limited resolution.



Spatial Coherence: Targets vs. Background
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Algorithms attempt to exploit differences in coherence between 

objects and the environment.



Simulation: Point-based Sonar Signal Model
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• Computationally intensive: many points required for coherence to converge.

• “Secondary” effects not simulated: broadband beams, occlusion, multipath, 

elastic resonances

1.5 – 5m altitude

Proud to fully buried



Model Baseline for Simulation

• Spatial coherence in munitions survey geometry not previously studied.

• Approximations break down: far-field, narrowband

• Verification through related theory and controlled laboratory data
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Delay and Sum: Conventional Reconstruction
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1. Calculate Delays
2. Add up all the signals

DAS is the standard approach for underwater acoustic imaging.

“Backprojecting pressure”



Delay, Multiply, and Sum: Adaptation
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DMAS is readily adaptable.  

Further refinement for environmental properties may be warranted. 
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“Backprojecting covariance”



Short-Lag Spatial Coherence: Adaptation
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SLSC algorithms cannot be directly applied.  

SAS arrays don’t support simultaneous focusing and coherence estimation.
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Integrate

“Spatial Map of Coherence Length”

Biomedical:

Converging transmit 

provides focusing

SAS:

Diverging transmit beam, 

moving array.  

Focused only on 

reconstruction



Short-Lag Spatial Coherence: Challenges
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SLSC-inspired approaches not viable without changes to array geometry.

But…interesting result relating to occlusion and shadows.

Image from Tx2 Image from Tx4

Tx2 Tx4



Image Algorithm Recap

• Short-lag spatial coherence approaches not pursued further.

• Comparisons on simulated data:
• delay and sum (DAS) 

• delay, multiply and sum (DMAS)

• Multi-static occlusion estimation using coherence
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Overview of simulations
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• Objects

• Proud cinder block

• Partially buried “155mm Howitzer”

• 3cm buried “60mm mortar”

• Orientations

• Environments

• Silt

• Sand

• Uncompensated motion

• Altitude



MIP Comparison: DAS vs. DMAS
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Slice Comparison: DAS vs. DMAS
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Detectability of Small Targets
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Sensitivity to Motion Error
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Sensitivity to Bottom Type
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DMAS improves imagery 

for both sediments.  

Simulation may lack 

fidelity needed for further 

refinement.



Reconstruction Quality vs. Altitude
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1.5m 

altitude
5.0m 

altitude

Along-track: 

synthetic aperture

Cross-track: 

real aperture

DMAS improvement 

is greater in along-

track because more 

“elements”



(Un)expected Computational Challenges

• Simulation and reconstruction are both computationally intensive
• PoSSM simulation

• Many scattering elements needed for high fidelity

• GPU accelerated, largely well-optimized

• Reconstruction 
• Many more operations per voxel

• Biomedical literature describes challenges and potential solutions

• Reconstruction algorithms required acceleration in R&D to make 
timely progress.

• Computational resources limited by procurement delays
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Occlusion for Multi-static Sonars
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Shadows are important features, but rarely observed in images from low 

frequency SAS systems.



Occlusion Detection with Coherence
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Recovered 

“shadows” provide 

clues about object 

height, pose, and 

burial depth.



Future Research

▪ There is valuable information in signal coherence that is not 
currently being accessed in image reconstruction.

▪ Initial results show plenty of promise:
▪ Speckle rejection, enhanced resolution in simulated data

▪ Occlusion and burial with multi-static coherence in laboratory data

▪Need to continue with application to field data
▪ Focus of remaining effort in this SEED program.

▪ Future research recommendations pending these results.

▪ Rigorous software acceleration would need to be part of any 
follow-on effort.
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BACKUP MATERIAL
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Short-Lag Spatial Coherence: Rotation
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Symmetry to targets yields coherence.  

But target self-occlusion requires image flipping to realize it.

Target features 

appear this side
Target features 

appear this side



Coherence “shadows” to determine burial
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Algorithm comparison: sand background
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Seafloor’s effect on coherence
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MR24-4520: Spatial Coherence Based Reconstruction for 

Detection of Underwater Munitions

Performers: Thomas Blanford, University of New Hampshire

Technology Focus
•  Summarize technology or methodology being studied or developed

Research Objectives
•  Develop coherence-based image reconstruction algorithms to better detect UXO

• Sensor agnostic algorithms that can be readily adapted

• Assessment of data product’s utility in ATR pipeline

Project Progress and Results
• Results from simulation and laboratory data demonstrated improved image 

quality and context about targets

• Next step: apply to field data from SERDP sensors

Technology Transition
• Incorporate into an automated target recognition and classification pipeline

• Algorithm acceleration
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Plain Language Summary

▪Sonar image reconstruction algorithms use simple delay-and-
sum beamforming.
▪ This doesn’t use all the available information in the signals.

▪ There are expected differences between objects and the 
background in how similar their signals are across an array.

▪By adapting algorithms from biomedical ultrasound, we 
exploit these differences to improve image quality for better 
detection and classification of UXO.
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Impact to DoD Mission 

▪ Preliminary results show that image quality can be substantively improved 
through alternative reconstruction with no hardware changes.

▪ Alternative data products provide additional context about UXO shape, 
pose, and burial.
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Publications

▪ T.E. Blanford, “Occlusion and height estimation using the 
coherence of multi-static synthetic aperture sonar images”, 
JASA-EL, 2024 (in review).
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