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Bottom Line Up Front

= Goal: Develop acoustic image reconstruction algorithms to improve
UXO detection by exploiting differences signal coherence between
objects and the seafloor.

= Working well:
= |nitial algorithm development through simulation has aided productivity.
= DMAS-like algorithms provide clear boost in image quality.

= Challenges:
» Physics-based limitations: some targets are still very difficult to detect.
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Technical Objective

Advances in biomedical ultrasound imaging have used spatial
coherence for improved contrast, speckle rejection, and
resolution.

1. Adapt coherence-based image reconstruction algorithms for low-
frequency synthetic aperture sonar sensing geometry.

2. Apply algorithms to field data from SERDP sensors.

3. Quantitatively and qualitatively compare coherence-based and
conventional image reconstruction for a variety of targets and burial
depths.
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Technical Approach
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Motivation: existing UXO sonar surveys

Depth [m]

-0.5

0.5

1.5

2019 1108 173034 - 01

® Mixed, N/A cm

® 105mm Projectile, 24 cm

-20 155mm Howitzer shell, 30 cm
® 81mm Mortar shell, 6 cm

® 105mm Projectile, 6 cm

-40 Clutter, 0 cm

® 155mm Howitzer shell, 4 cm
¢ 81mm Mortar shell, 6 cm

Along-track [m]

Observing target shape is hindered by strong background and limited resolution.
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Spatial Coherence: Targets vs. Background
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Algorithms attempt to exploit differences in coherence between
objects and the environment.

7 & SERDP




Convention reconstruction: delay and sum
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Coherence-based reconstruction

Vi) — =2 (pip3) = 0
1\P1P2 c?0%x bz Mutual coherence (spatial covariance) propagates

x 10% . according to a pair of 2" order PDEs
Vapipz) = 57, (P1p2) = 0

2. Combinatorially multiply “Backprojecting complex covariance”
pairs of signals
/v N-1 N
RRRRTIRRRR DG =) ) sis
\ i j=i+1

\\ s A C - _ _ _
1.Calculate \\\ v II Si = JP(XT:XRi;t)S t—§(|Xs —Xtl + |Xs _XRiD dXs
Delays \\\\| /

WMy 3. Sum the covariance matrix

—

9 HBSERDP



Advances in the approach

* Theoretical:
» Connection to propagating field quantities was central to explaining results.

* Practical:
« Downward-looking sensing geometry required numerical modification.
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Algorithms were applied to 2019 data
collected by the SVSS.
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A set of 13 objects were analyzed.

Target Description Length Width Water Depth | Burial Depth
A solid concrete cylinder 30.5 cm 152 cm 1.3 m 0 cm
B steel pipe 305 em | 114 em 1.2 m 0 cm
C steel sphere N/A 10.2 em 1.2 m 0 cm
D inert 155 mm howitzer | 86.2 cm 15.5 cm 1.3 m 4 cm
E inert 105 mm projectile | 46.1 cm 10.5 em 1.3 m 6 cm
F solid aluminum cylinder | 30.5 em 152 cm 3.0m 14 cm
G steel sphere N/A 10.2 em 3.0m 16 cm
H solid aluminum cylinder | 30.5 em 152 cm 29m 9 cm
I solid aluminum cylinder 61 cm 152 cm 29m 0 cm
] solid aluminum cylinder | 30.5 em 152 em 3.0m 0 cm
K cinder block 39.7 em 19.8 cm 31m 0 cm
L concrete pad 30.5em | 30.5 cm 3.0m I em
M concrete pad 30.5em | 30.5 cm 3.0m 16 cm
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Objects span a range of:

Type (UXO, science, clutter)
Size

Shape

Water depth

Burial Depth

$©SERDP



Conventional Reconstruction Coherence-based Reconstruction
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Conventional Reconstruction Coherence-based Reconstruction
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Conventional Reconstruction Coherence-based Reconstruction
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Quantitative Comparison Metrics

Generalized Contrast to

“ Contras_t e Noise Ratio
common and intuitive “immune to nonlinear warping”
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Metrics show increased image quality
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Data analysis & modeling explain contrast.

Spatial Coherence of Sediment Contrast Change: DAS - DMAS
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Modeling shows that contrast will increase with synthetic aperture size.
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Point spread function explains appearance.
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Summary

« Coherence-based reconstruction algorithms were adapted for SAS
and demonstrated on field data.

* The reconstruction improves image quality and target detectability.
* Increased contrast
« Slightly enhanced resolution

* The improvements are “free”.
» Exploits information in signals that has previously been discarded.

« Key difference: slight cross-track “blurring”.
* Due to non-uniform distribution of spatial coherence sampling.
 Paths identified for improvement.
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Future Research

1. Evaluation & adaptation for different environments (sand, etc.).

2. Computational acceleration.

3. Demonstration in an ATR paradigm.
|

Task 1:
Environments

=
Acceleration I

Task 3:

ATR paradigm
Year 1: $200k ! Year 2: $125k
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MR24-4520: Spatial Coherence Based

Reconstruction for Detection of

Underwater Munitions

Performers: Thomas Blanford (University of New Hampshire)

Technology Focus
* Adapt image reconstruction algorithms from biomedical ultrasound to exploit
differences in signal coherence between UXO and the seafloor.

Research Objectives

+ Develop sensor agnostic reconstruction algorithms

» Demonstrate on field data from a SERDP sonar system
* Quantify and explain performance gains

Project Progress and Results
* Reconstruction demonstrated on a set of targets in SVSS field data.
* Image quality improvements described quantitatively and qualitatively.

Technology Transition
» Discuss how algorithms can be incorporated into existing SERDP/ESTCP
signal processing and target detection processing chains.
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Plain Language Summary

= Current sonar image reconstruction makes it hard to detect
UXO when they are buried near the top of the sediment.

= Image reconstruction algorithms, inspired by biomedical
ultrasound, are being develop to best exploit differences
between UXO and the seafloor.

= The algorithms are sensor agnostic and can be applied to
any SERDP sonar sensor to improve image quality.

= By connecting the algorithms to theory, the techniques are
both generalizable and explainable.
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Impact to DoD Mission

- Enhanced image quality is demonstrated on field data.

= Improvement in quality is quantified and is explainable based on acoustic theory.

= The algorithms exploit acoustic information that has previously been unused. The performance gains are
“free” and don’t require any sensor upgrades or modifications.

Demonstration on field data proves the techniques can work in real-world environments to better detect and
classify UXO.
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