

Spatial Coherence Based Reconstruction for Detection of Underwater Munitions

MR24-4520

Thomas E. Blanford

University of New Hampshire

In-Progress Review Meeting

August 12, 2025

Project Team

Thomas Blanford
University of
New Hampshire

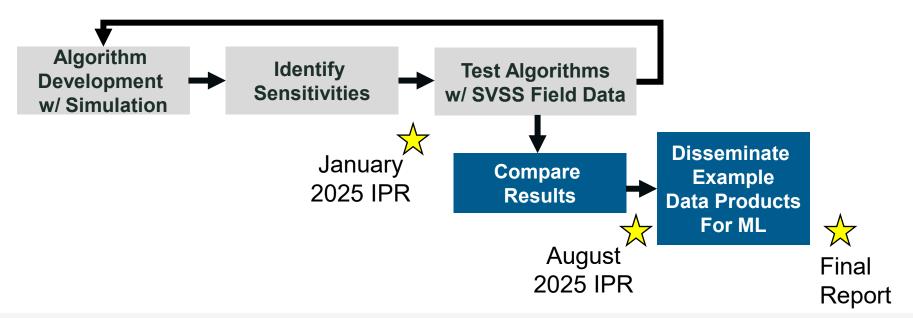
Research areas:

- Sonar system engineering
- Sonar signal processing
- Coherence of acoustic fields

Bottom Line Up Front

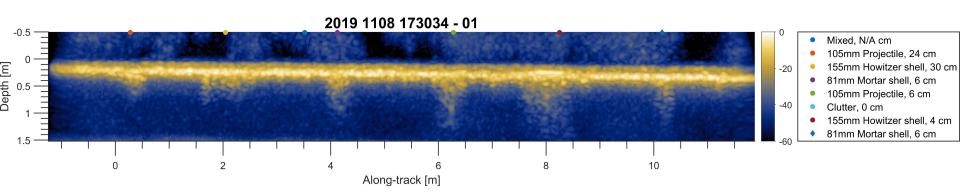
 Goal: Develop acoustic image reconstruction algorithms to improve UXO detection by exploiting differences signal coherence between objects and the seafloor.

- Working well:
 - Initial algorithm development through simulation has aided productivity.
 - DMAS-like algorithms provide clear boost in image quality.
- Challenges:
 - Physics-based limitations: some targets are still very difficult to detect.

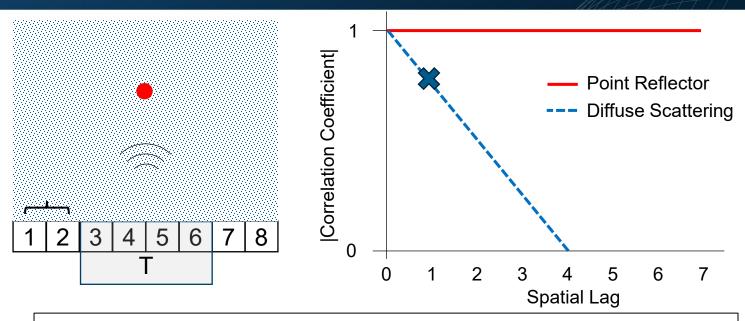

Technical Objective

Advances in biomedical ultrasound imaging have used spatial coherence for improved contrast, speckle rejection, and resolution.

- 1. Adapt coherence-based image reconstruction algorithms for low-frequency synthetic aperture sonar sensing geometry.
- 2. Apply algorithms to field data from SERDP sensors.
- Quantitatively and qualitatively compare coherence-based and conventional image reconstruction for a variety of targets and burial depths.



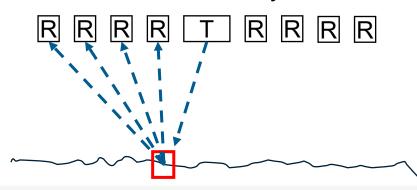
Technical Approach


Motivation: existing UXO sonar surveys

Observing target shape is hindered by strong background and limited resolution.

Spatial Coherence: Targets vs. Background

Algorithms attempt to exploit differences in coherence between objects and the environment.


Convention reconstruction: delay and sum

$$\nabla^2 p - \frac{1}{c^2} \frac{\partial^2 y}{\partial^2 x} p = 0$$

Pressure propagates according to a 2nd order PDE

"Backprojecting pressure"

1. Calculate Delays

2. Add up all the signals

$$D(\bar{\chi}_{S}) = \sum_{i}^{N} p\left(\frac{1}{c}(|\bar{\chi}_{S} - \bar{\chi}_{T}| + |\bar{\chi}_{S} - \bar{\chi}_{R_{i}}|)\right)$$

Coherence-based reconstruction

$$\nabla_1^2 \langle p_1 p_2^* \rangle - \frac{1}{c^2} \frac{\partial^2 y}{\partial^2 x} \langle p_1 p_2^* \rangle = 0$$

$$\nabla_2^2 \langle p_1 p_2^* \rangle - \frac{1}{c^2} \frac{\partial^2 y}{\partial^2 x} \langle p_1 p_2^* \rangle = 0$$

Mutual coherence (spatial covariance) propagates according to a pair of 2nd order PDEs

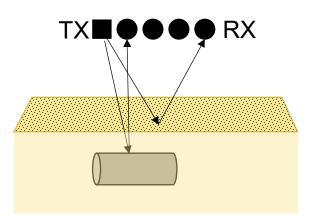
2. Combinatorially multiply pairs of signals

"Backprojecting complex covariance"

$$D(\bar{\chi}_{S}) = \sum_{i}^{N-1} \sum_{j=i+1}^{N} s_{i} s_{j}^{*}$$

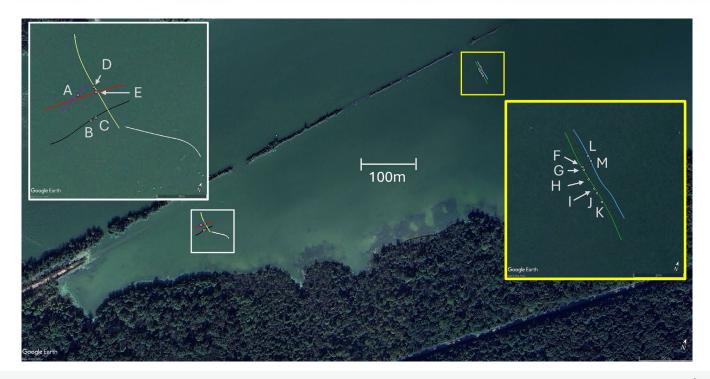
$$s_{i} = \int p(\bar{\chi}_{T}, \bar{\chi}_{R_{i}}, t) \delta\left(t - \frac{c}{2}(|\bar{\chi}_{S} - \bar{\chi}_{T}| + |\bar{\chi}_{S} - \bar{\chi}_{R_{i}}|)\right) d\bar{\chi}_{S}$$

3. Sum the covariance matrix



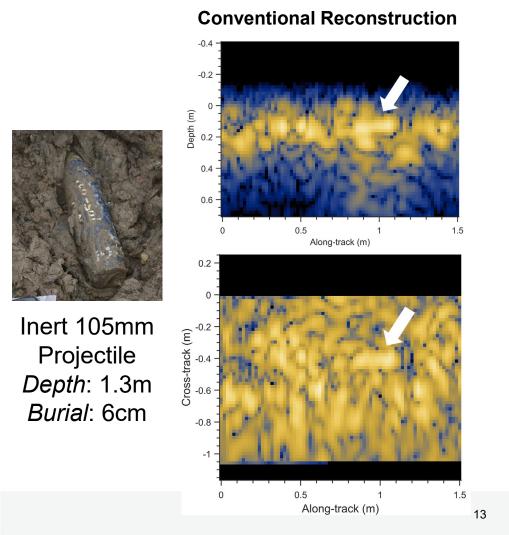
Advances in the approach

- Theoretical:
 - Connection to propagating field quantities was central to explaining results.
- Practical:
 - Downward-looking sensing geometry required numerical modification.


"Backprojecting complex covariance"

"Backprojecting complex co-standard deviation"

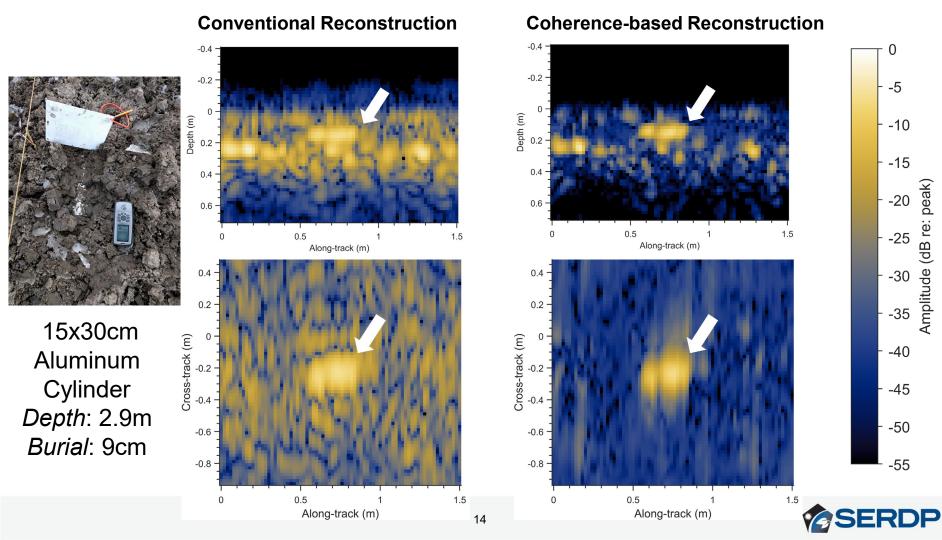
Algorithms were applied to 2019 data collected by the SVSS.


A set of 13 objects were analyzed.

Target	Description	Length	Width	Water Depth	Burial Depth
Α	solid concrete cylinder	30.5 cm	15.2 cm	1.3 m	0 cm
В	steel pipe	30.5 cm	11.4 cm	1.2 m	0 cm
С	steel sphere	N/A	10.2 cm	1.2 m	0 cm
D	inert 155 mm howitzer	86.2 cm	15.5 cm	1.3 m	4 cm
Е	inert 105 mm projectile	46.1 cm	10.5 cm	1.3 m	6 cm
F	solid aluminum cylinder	30.5 cm	15.2 cm	3.0 m	14 cm
G	steel sphere	N/A	10.2 cm	3.0 m	16 cm
Н	solid aluminum cylinder	30.5 cm	15.2 cm	2.9 m	9 cm
I	solid aluminum cylinder	61 cm	15.2 cm	2.9 m	0 cm
J	solid aluminum cylinder	30.5 cm	15.2 cm	3.0 m	0 cm
K	cinder block	39.7 cm	19.8 cm	3.1 m	0 cm
L	concrete pad	30.5 cm	30.5 cm	3.0 m	1 cm
M	concrete pad	30.5 cm	30.5 cm	3.0 m	16 cm

Objects span a range of:

- Type (UXO, science, clutter)
- Size
- Shape
- Water depth
- · Burial Depth



Coherence-based Reconstruction -0.2 --5 Depth (m) -10 -15 Amplitude (dB re: peak) -20 0.6 0.5 -25 Along-track (m) 0.2 --30 -35 Cross-track (m) -40 -45 -0.8 -50 -55

Along-track (m)

SERDP

-5

-10

-15

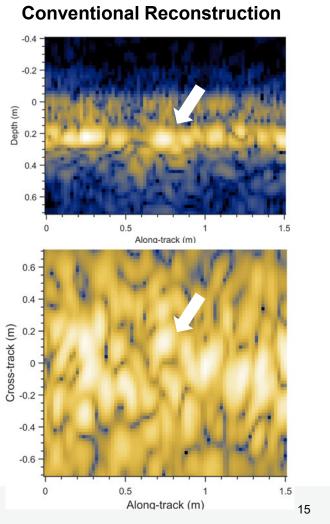
-20

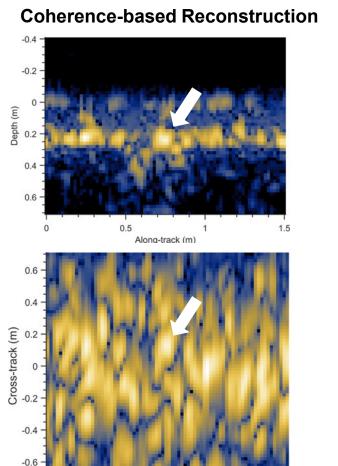
-25

-30

-35

-40


-45


-55

Amplitude (dB re: peak)

10cm shotput Depth: 3.0m Burial: 16cm

0.5

Along-track (m)

-5

-10

-15

-20

-25

-30

-35

-40

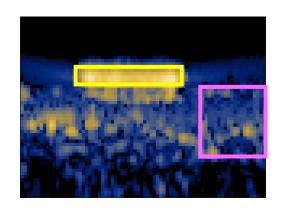
-45

- -50

-55

SERDP

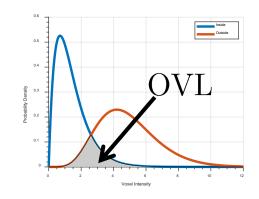
Amplitude (dB re: peak)


Quantitative Comparison Metrics

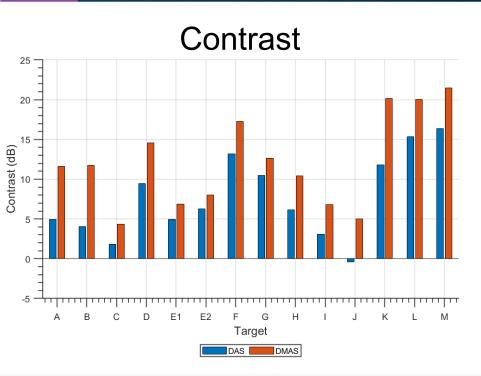
Contrast "common and intuitive"

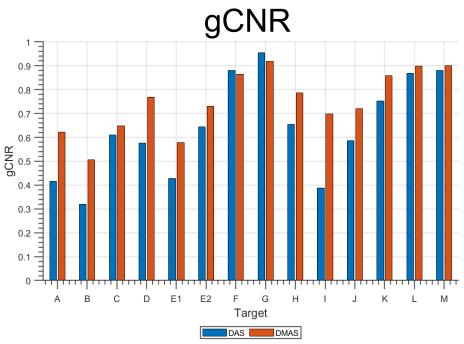
$$C = \frac{\mu_i}{\mu_o}$$

 μ_i Mean UXO intensity

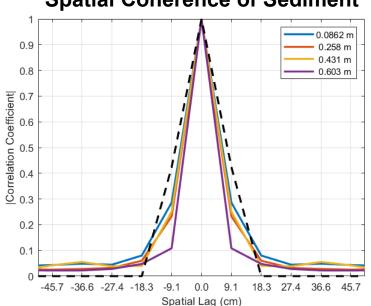

 μ_o Mean background intensity

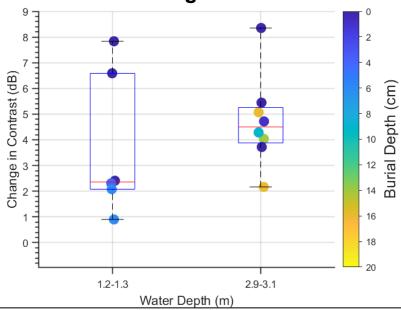
Generalized Contrast to Noise Ratio


"immune to nonlinear warping"


$$gCNR = 1 - OVL$$

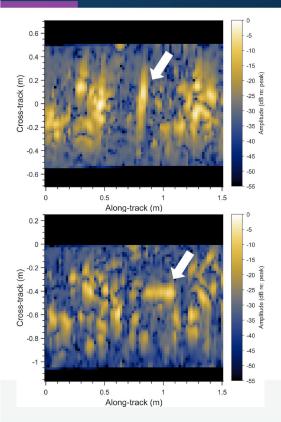
Metrics show increased image quality

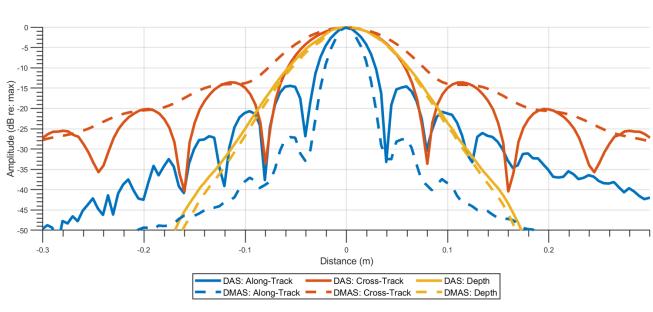




Data analysis & modeling explain contrast.

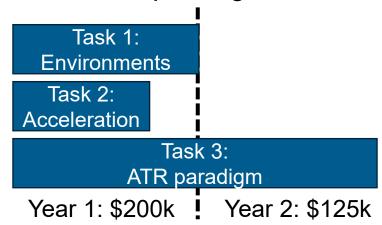
Spatial Coherence of Sediment


Contrast Change: DAS → DMAS



Modeling shows that contrast will increase with synthetic aperture size.

Point spread function explains appearance.


Summary

- Coherence-based reconstruction algorithms were adapted for SAS and demonstrated on field data.
- The reconstruction improves image quality and target detectability.
 - Increased contrast
 - · Slightly enhanced resolution
- The improvements are "free".
 - Exploits information in signals that has previously been discarded.
- Key difference: slight cross-track "blurring".
 - Due to non-uniform distribution of spatial coherence sampling.
 - Paths identified for improvement.

Future Research

- 1. Evaluation & adaptation for different environments (sand, etc.).
- 2. Computational acceleration.
- Demonstration in an ATR paradigm.

BACKUP MATERIAL

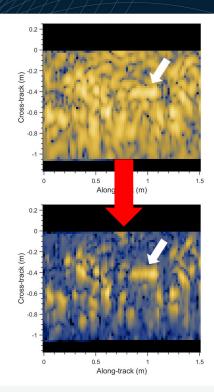
MR24-4520: Spatial Coherence Based Reconstruction for Detection of Underwater Munitions

Performers: Thomas Blanford (University of New Hampshire)

Technology Focus

 Adapt image reconstruction algorithms from biomedical ultrasound to exploit differences in signal coherence between UXO and the seafloor.

Research Objectives

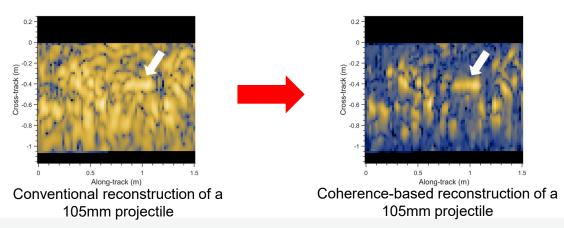

- Develop sensor agnostic reconstruction algorithms
- Demonstrate on field data from a SERDP sonar system
- Quantify and explain performance gains

Project Progress and Results

- Reconstruction demonstrated on a set of targets in SVSS field data.
- Image quality improvements described quantitatively and qualitatively.

Technology Transition

 Discuss how algorithms can be incorporated into existing SERDP/ESTCP signal processing and target detection processing chains.


Plain Language Summary

- Current sonar image reconstruction makes it hard to detect UXO when they are buried near the top of the sediment.
- Image reconstruction algorithms, inspired by biomedical ultrasound, are being develop to best exploit differences between UXO and the seafloor.
- The algorithms are sensor agnostic and can be applied to any SERDP sonar sensor to improve image quality.
- By connecting the algorithms to theory, the techniques are both generalizable and explainable.

Impact to DoD Mission

- Enhanced image quality is demonstrated on field data.
 - Improvement in quality is quantified and is explainable based on acoustic theory.
 - The algorithms exploit acoustic information that has previously been unused. The performance gains are "free" and don't require any sensor upgrades or modifications.
 - Demonstration on field data proves the techniques can work in real-world environments to better detect and classify UXO.

Publications

Thomas E. Blanford; Occlusion and height estimation using the coherence of multi-static synthetic aperture sonar images. JASA Express Lett. 1 June 2025; 5 (6): 064802. https://doi.org/10.1121/10.0036836

Thomas E. Blanford; Applications of coherence to acoustic imaging for munitions response surveys. J. Acoust. Soc. Am. 1 April 2025; 157 (4_Supplement): A84. https://doi.org/10.1121/10.0037487

Literature Cited

- D. Hyun, L. Abou-Elkacem, V. A. Perez, S. M. Chowdhury, J. K. Willmann and J. J. Dahl, "Improved Sensitivity in Ultrasound Molecular Imaging With Coherence-Based Beamforming," in IEEE Transactions on Medical Imaging, vol. 37, no. 1, pp. 241-250, (2018).
- G. Matrone, A. S. Savoia, G. Caliano and G. Magenes, "The Delay Multiply and Sum Beamforming Algorithm in Ultrasound B-Mode Medical Imaging," in IEEE Transactions on Medical Imaging, vol. 34, no. 4, pp. 940-949, (2015)
- D. Hyun, A. L. C. Crowley and J. J. Dahl, "Efficient Strategies for Estimating the Spatial Coherence of Backscatter," in IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 64, no. 3, pp. 500-513, (2017).
- D.C. Brown, S. Johnson, C. Brownstead, J. Calantoni, and G. Fabian, Strategic Environmental Research and Development Program, "Sediment Volume Search Sonar Development," SERDP-ESTCP Final Report MR-2545, (2021).
- D. A. Cook and D. C. Brown, "Synthetic Aperture Sonar Image Contrast Prediction," in IEEE Journal of Oceanic Engineering, vol. 43, no. 2, pp. 523-535, April 2018

