

Unmanned Surface Vessel Based Munition Detection, Mobility and Burial Monitoring, and Environmental Mapping in Surf Zone Environments and Demonstration of Deterministic Modeling Capabilities

MR 22-3303

Peter Traykovski

Applied Ocean Physics and Engineering Dept.

Woods Hole Oceanographic Institution

In-Progress Review Meeting

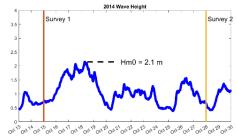
8/14/2025

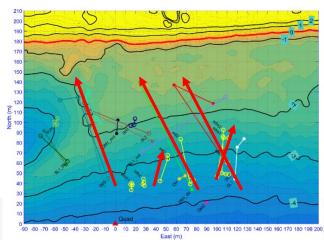
Project Team

- Peter Traykovski
- Applied Ocean Physics and Engineering Dept.
- Woods Hole Oceanographic Institution

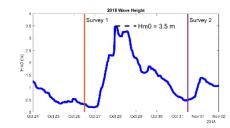
Bottom Line Up Front (Red is new for 2025)

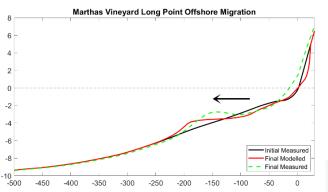
- Round 1 (Spring 2023) Deployments of Surrogates at Martha's Vineyard Went Well
- Planned Round 2 (Fall 2023) Deployments of Surrogates at Martha's Vineyard delayed till fall 2024 due to timing of funding
 - Fall 2024 Deployment successful. Will show data
- Revised Unmanned Surface Vessel (USV) USBL SUXO tracking more difficult than anticipated, but proceeding well
 - Completed with interesting results from calm water and field use of this system at Martha's Vinyard showing it's potential and limitations
- Continued refinement of USVs for bathymetry in surf-zone going well
 - Investigating Multibeam sensors on these platforms
 - Integrated Coastal Solutions has production hulls. Working actively with FRF and USGS on use for their goals and data processing.
- Technology and Methods developed in this work and previous work is being used ESCTP demonstration work with Univ of Delaware and N.R.L.


Technical Objective


- Evaluate performance of predictive models for Munition Mobility, Burial and Bathymetric change based on observations
 - Conduct two set of measurements in spring and fall at Martha's Vineyard. Spring and Fall Deployments tend to have different sand bar migration characteristics
 - Develop USV based tracking technology for sUXO with embedded pingers. Less effort by divers needed
- Refine surf-zone capable USV for Bathymetry
 - Develop and evaluate precision MMU tracking buoy for this project and Maine work .. not in original proposal
- Evaluate Sidescan detection of unburied UXO in surf zone

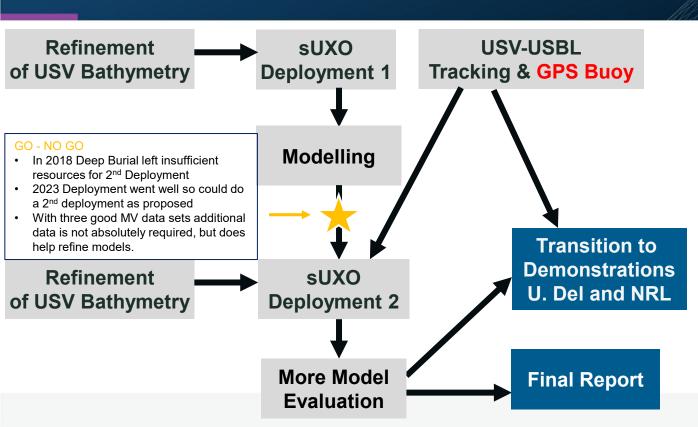
Previous Results


2014: 100 m + Far Onshore migration of low density (S < 2.5) sUXO



2018 Deep (1.5 m) Burial Due to Offshore Bar Migration

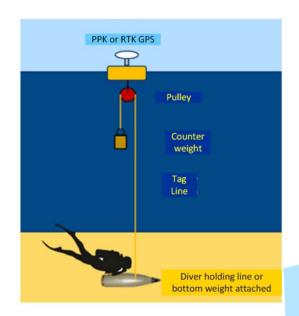
No $(\Delta X < 5m)$ sUXO Migration for all Densities



UnMES Migration ClassesNone, Very Short0 – 5 mMedium5 - 50 mFar50 m +

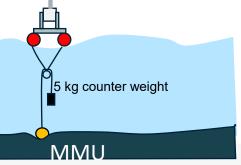
This project
Deployment #1
(Spring 2023)
Moderate (0.5 m)
Burial Due to Offshore
Bar Migration
No sUXO Migration

Technical Approach

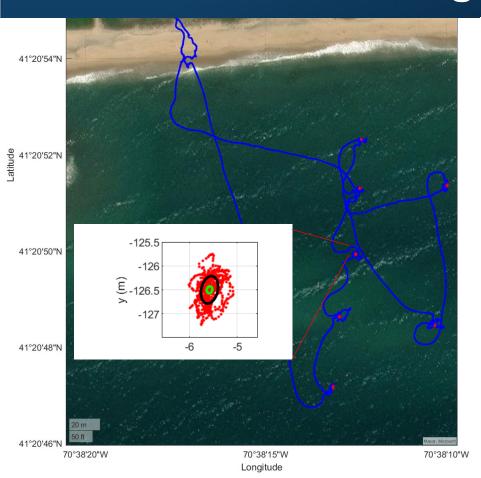


Results to Date

- GPS Buoy Development and Results
- USV sUXO Tracker Refinement
- Spring 2023 & Fall 2024 Martha's Vineyard Deployments


Development and Evaluation of a Precision GNSS sUXO Marking buoy

Concept by Stefano Biagini at CMRE .. We are extending to rougher conditions



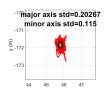
Uses a Emlid m2 L1/L2PPK GNSS Same as my surf-zone USV

GNSS sUXO Marking buoy: Results

All major axis std=0.26447 All minor axis std=0.16537

major axis std=0.21791 minor axis std=0.13986

major axis std=0.33785


minor axis std=0.24072

major axis std=0.33317

-13 -12 -11 -10

major axis std=0.17044

minor axis std=0.083854

GNSS sUXO Marking buoy: Results

- Have yet to do a comprehensive analysis of all buoy data
 - Precision vs Wave height/period
- Have 7 data sets over a wide variety of Wave Conditions
 - Limited by conditions that I can get out and tie the buoy on!
 - Requires some knowledge of depth so counter-weight is not on bottom
- Typically, precision is better than 30 cm
 - Based on rms of wave filtered data
 - Hard to assess accuracy as don't have a better established method to determine true position.
 - Perhaps can use low tide (exposed, direct GNSS) vs high tide (with buoy/string) at Maine

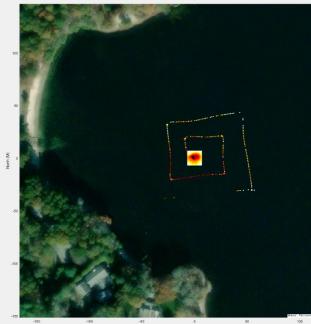
- The USV uses a 4-channel real aperture vertical array and synthetic aperture horizontal processing to localize principle.
 Iocalize charology Development to based Surrogate UXO localization
- Direction only based processing with incoherent averaging of convergent beam patterns

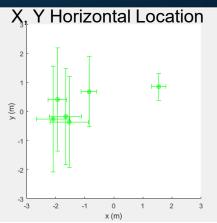

Based on RTSYS.EU
4 channel coherent recorder

Had timing sync issues with IMU

Fixed now!

Simulations showing results after 1, 2, 6 and 20 pings with USV traveling in circle around target

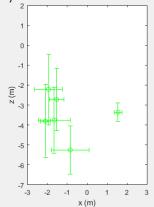

Simulation tools allow examining different array and pinger configurations



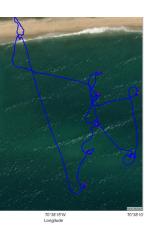
Results: Technology Development: Field (Pond) Test Results of USV Tracking

3D Locations variation based on multiple loops of USV

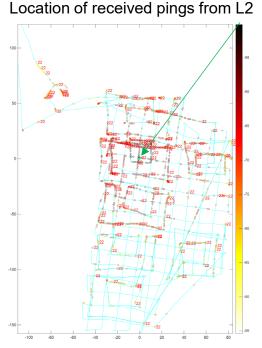
Location based on single loop of USV

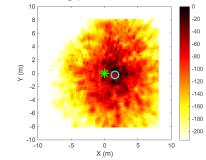


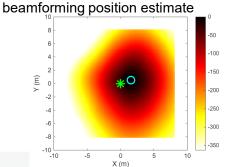
- Target was at 2.5 m depth
- ~2 m rms variation of vertical locations
- Not good enough for burial depth yet
- Work still in progress


- ~1 m rms variation of horizontal locations
- Some indication of PPK GPS Position Errors
- Better sync with GPS/IMU and a better IMU is next

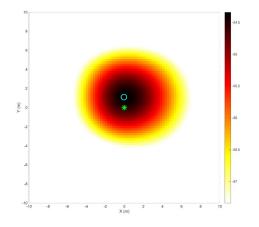
X, Z Vertical Location




MV Field use of USV based SUXO Tracking


GPS Bouy is Ground Truth (*)

Synthetic and real aperture beamforming position estimate



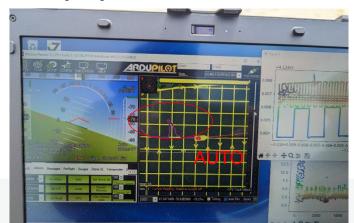
Synthetic aperture only

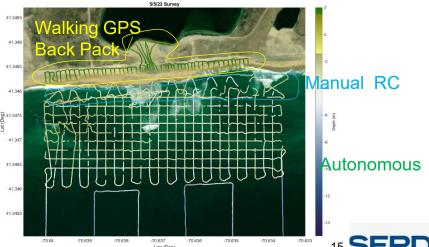
Amplitude Only position estimate

- · Peak of surface fit to amplitude
- Requires lots of receptions near the target to get a good surface
- Easy with a USV!

MV Field use of USV based SUXO Tracking

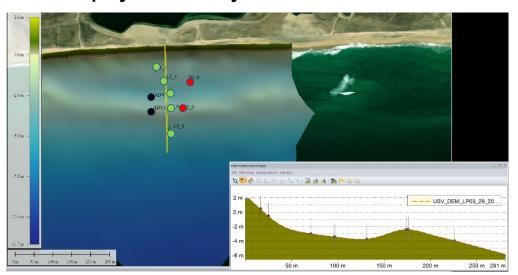
	InCoherent	Coherent			
	Mean	Mean	Amplitude	InCoh	Coh
Object	Position	Position	Surface Mean	Position	Position
Name	Error	Error	Postion Error	Spread	Spread
L1	2.3	2.2	2.4	3.7	2.8
L2	1.7	1.6	1.1	3.9	2.8
L3	6.6	4.7	7.1	5.0	3.0
L4	4.0	3.6	4.0	3.9	2.9
L5	1.3	1.2	1.6	3.8	3.0


Summary: 1 to 4 m accuracy should be achievable without Scuba Operations. No burial estimates possible with this method.


Results: Background: Yellowfin Surf Zone USV

Developed in MR20-1494. Has dramatically improved our ability to measure bathymetric change.

- Robust waypoint autonomy in breaking waves
- One to two person launch and recovery
- Survey bathymetry before after each storm
- New in 2023:
- Realtime depth data transmission to base station
 - Allows adaptive mission preconfirmation and QC
- Some overheating issues:
 - Sourced new motor controller with better thermal regulation
- Jet Drive runs aground gracefully and safe, but clogs with seaweed
 - 2024: Dual "Weed shedding" dual thruster fully functional
 - Integrating Multibeam and Camera into dual thruster model

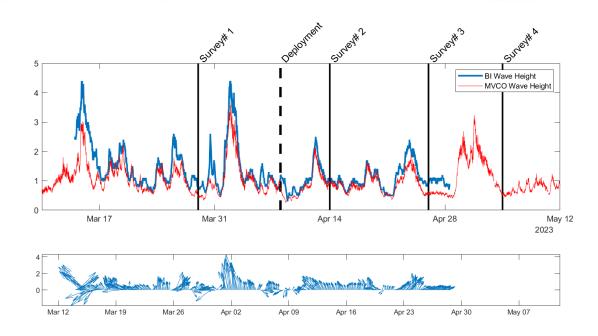


Results: Spring 2023 Deployment at Long Point Wildlife Refuge, Martha's Vineyard

Pre-Deployment Survey

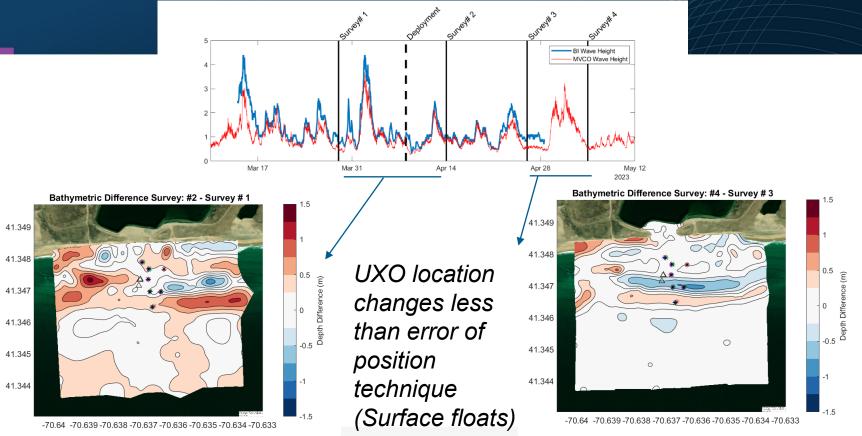
Cross-Shore array of:

- 5 low density (S=2.5, 65 lbs) L=75,D=15 cm
- 2 higher density (S= 4.0, 95 lbs) L=75,D=15 cm
 - · Smart sUXO, Optical Burial and **Orientation Sensors**

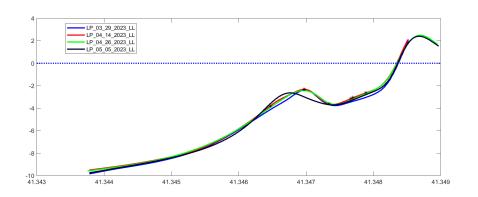

- 2 ADVS
 - Bar crest
 - Bar trough Geotech->Cobbles under 10 to 30 cm sand
- Offshore Waves from MVCO

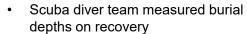


Results: 2023 Waves from WHOI MVCO

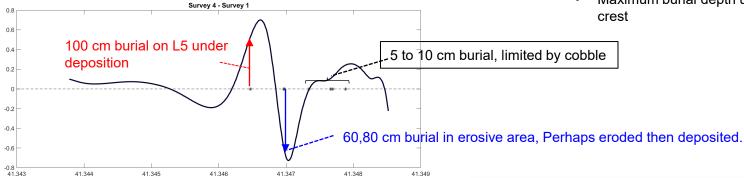


Results: 2023 Surveys

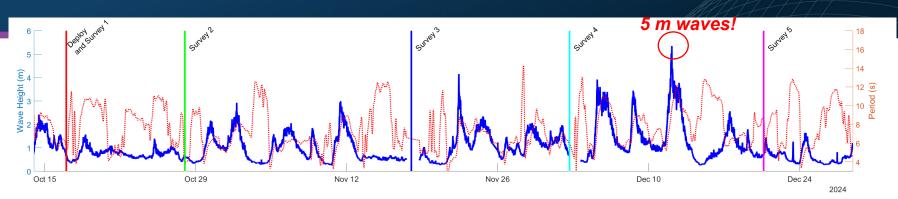


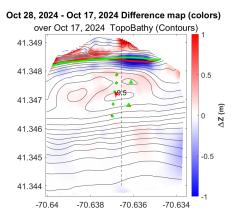


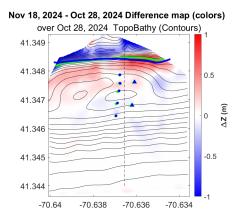
Results: 2023 Bathymetric Change & Very Little Munition Migration

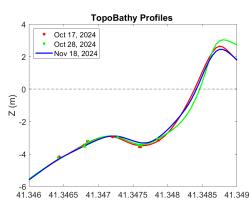


Results: Spring 2023 Deployement Burial due to Bathymetric Change

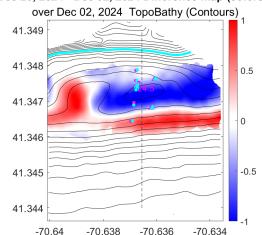





- sUXO buried 5 to 100 cm
- Maximum burial depth under bar crest

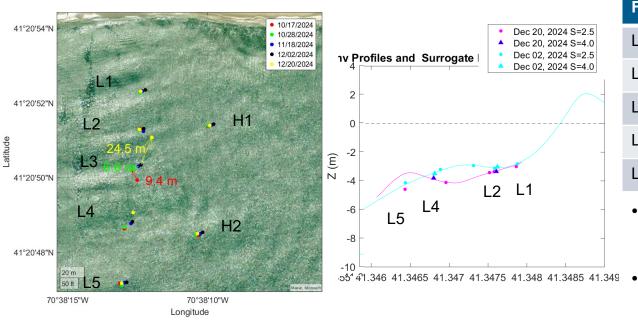


Fall 2024: Difference maps & UXO Migration





Fall 2024: Difference Map for survey 4 and recovery


5 m wave event results in 24 m migration of low density sUXO on crest of bar (survey 4), became trough at recovery

Fall 2024 Deployment Migration & Burial

Medium (5 -50 m) Migration of S=2.5 sUXO In region of bar migration

Final Burial, L (S=2.5), H (S=4)				
L1: 100 cm				
L2: 12 cm	H1: 80 cm			
L3: 15 cm				
L4: 30 cm	H2: 85 cm			
L5: 100 cm				

- Burial at erosive zone L2 L4 generally less than depositional (L5) or neutral (L1)
- High Density H1, H2 buried
 Deeply despite erosion.

 Possibly Liquefaction or Erosion then Deposition

Summary of results so far based on MV observations

- Low Density sUXO move large (100 m+) distances rarely
- Move small to medium distances frequently
- Have never seen 1 km + movement out of known range boundaries
- High density UXO only move very small (less than 5 m) distances
- Burial and Migration are high coupled to nearshore bathymetric change, with 1 m + burial common by mobile sand bars during storms

Next Steps

- Modelling of 2023 Round1 Complete
 - Have not made good figures
- Modeling of 2025 data
 - In progress
- Modelling skill is generally poor with both data sets due to inability to predict bathymetric change
 - Model was tuned for previous data sets, and that tuning doesn't work for new data
 - Recently discovered I can put measure bathy change data into model with new code
 - This has potential for improved results
- Interim Report on USV Tracking and GPS Buoy Technology
- Final Report Winter 2025

Technology Transfer

- Upcoming Demonstration work at Reid Beach Beach in Maine with USV based sUXO tracker and USV Bathymetry in collaboration with NRL and U Del.
- Commercial availability of Yellowfin Surf Zone Bathymetry USV. USCAE (Duck FRF) and USGS Santa Cruz both have one

Issues

- A bit behind schedule
- Emphasis changed slightly from modelling to refining observational techniques

BACKUP MATERIAL

These charts are required, but will only be briefed if questions arise.

MR22-3303: Unmanned Surface Vessel Based Munition Detection, Mobility and Burial Monitoring, and Environmental Mapping in **Surf Zone Environments and Demonstration of Deterministic Modeling Capabilities**

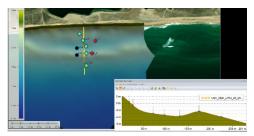
Performers: Peter Traykovski

Technology Focus

Measurements of Munition Mobility, Burial and Bathymetric Evolution using Surf-zone Capable Unmanned Surface Vehicles

Research Objectives

Evaluate performance of predictive models for Munition Mobility, Burial and Bathymetric change based on observations


Project Progress and Results

- Surf Zone scale numerical models for Munition Mobility, Burial and Bathymetric were refined to include Morphology
- Field Measurements underway: 7 surrogates Deployed. 4 surveys conducted

Technology Transition

- Present measurement and modelling results at SERDP meeting for transition to integration with more simpler modeling systems
- Commercialization of surf -zone USV

Plain Language Summary

- Munitions are most likely to be encountered by the general public in depths that are suitable for wading, swimming and scuba diving, e.g. the surf zone in open ocean environments
 - Surf zone bathymetric change is an important part of munition mobility and burial predictions
- A model has been developed and tuned with 2014 and 2018 data to predict cross shore movement of munitions and burial.
 - Now Includes Bathymetric Change
 - Needs testing with additional data. This project collects data and tests models
- Also Demonstrate use Unmanned Surf Vessels (USVs) to map bathymetry and survey locations of sUXO.
 - This will be utilized in upcoming collaborative projects.

Impact to DoD Mission

The Program Office wants to convey the significance of your research to DoD leadership, Congress, and the broader community.

- What's the most impactful thing that's happened since the last time you presented your work to us? Probably the Tech Transfer of Surf Zone USVs
- Why is this important? Making this technology available to a larger user group will help with shoreline management and storm response
- How is your project advancing DoD capabilities?
 - Advancing techniques to observe and model sUXO munition processes

Action Items

Actions view my project actions

MR22-3303 In Progress

Unmanned Surface Vessel Based Munition Detection, Mobility and Burial Monitoring, and Environmental Mapping in Surf Zone Environments and Demonstration of Deterministic Modeling Capabilities Peter Traykovski, Ph.D. | Woods Hole Oceanographic Institution Documents Show Closed Final reports and publication of results Overdue 8 days Deliverable: Final Report Action Type: Subtask Due Date: 7/31/2025 UD 4) Interim Report Pending Deliverable: Interim Report Action Type: Subtask Due Date: 9/15/2025 MB4) Analysis and Modelling with Deployment 1 Data Deliverable: None Action Type: Subtask Due Date: 9/15/2025 MB 7) Analysis and Modelling with Deployment 2 Data Deliverable: None Action Type: Subtask Due Date: 9/15/2025 October 2025 Quarterly Progress Report Deliverable: None Action Type: QPR Due Date: 10/15/2025 1 - 5 of 5 items

Publications

- USV based tracking techniques is patented
 - Doppler shift navigation system and method of using same Patent Publication/Patent Number: US11709262B2
 - Publication Date: 2023-07-25
 - Application Number: US17/425,343
 - Filing Date: 2020-10-05
 - Inventor : Fischell, Erin Traykovski, Peter
 - Assignee: WOODS HOLE OCEANOGRAPHIC INSTITUTION
- Publication on that was rejected. Need to resubmit with emphasis on sUXO Tracking
- Surf Zone USV work Published:
 - Francis, Holly, and Peter Traykovski. 2021. "Development of a Highly Portable Unmanned Surface Vehicle for Surf Zone Bathymetric Surveying." *Journal of Coastal Research*. https://doi.org/10.2112/JCOASTRES-D-20-00143.1.
- Have not published the Munition Mobility and Burial Measurements and models yet other than final reports

Acronym List

GPS	Global Positioning System		
IMU	Inertial Motion Unit		
MEMS	MicroElectroMechanical Systems		
MRSON	Munitions Response Statement Of Need		
MVCO	Martha's Vineyard Coastal Observatory		
PPK	Post Processing Kinematic		
RTK	Real Time Kinematic		
SERDP	Strategic Environmental Research and Development Program		
sUXO	Surrogate UXO		
SWASH	Simulating WAves till SHore		
UnMES	Underwater Munitions Expert System		
USBL	Ultra-Short Base Line		
USV	Unmanned Surface Vessel		
UXO	Unexploded Ordinance		
WHOI	Woods Hole Oceanographic Institution		
3DSS	3-Dimensional Side Scan		