

Model roundup and extension for the current- and wave-induced burial, re-exposure, mobilization and migration of UXO and DMM

MR21-1081 Peter Menzel Corvus Works GmbH In-Progress Review Meeting 01/13/2025

Project Team

Corvus Works

HR Wallingford

Peter Menzel (PI) Mirko Rummelhagen Daniel Klembt Richard Whitehouse (Co-PI) Sebastian Escobar

Tommaso Attili Nick Tavougtsoglou

Bottom Line Up Front

- A Simulation tool for burial and mobilization of UXO was developed.
- The site-manager requirements were defined in two site-manager meetings.
- The final Simulations for Fort Pierce are nearly finalized.
- The Lattice Boltzman Method was substituted by the established TELEMAC Model.
- UnMES was not available for Implementation and comparison.
- No further support needed.

Technical Objective

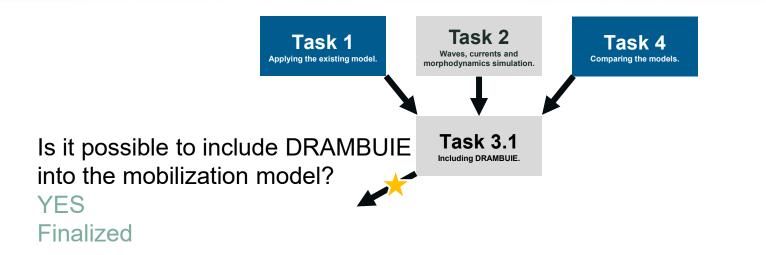
- We will provide tools that can directly be used by site managers to monitor and predict
 - if objects are mobilized by certain weather conditions,
 - in which direction they may be mobilized and
 - if they may be buried or re-exposed.
- The tools will be software to generate GIS-compatible maps.

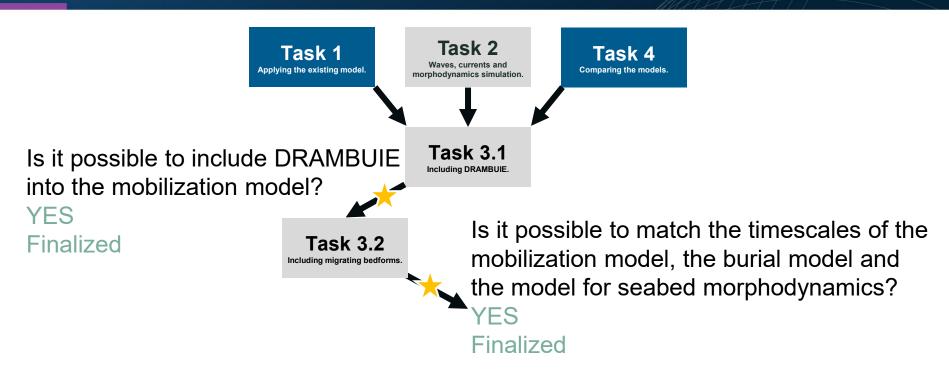
- Selecting the Area of Interest (site).
- Collecting Data.
- Adapting the UXOmob to the site.
- Stakeholder Dialog.
- Final Reporting and Site Manager Report.
- Final reporting still in progress.

Task 1 Applying the existing model. Task 2 Waves, currents and morphodynamics simulation.

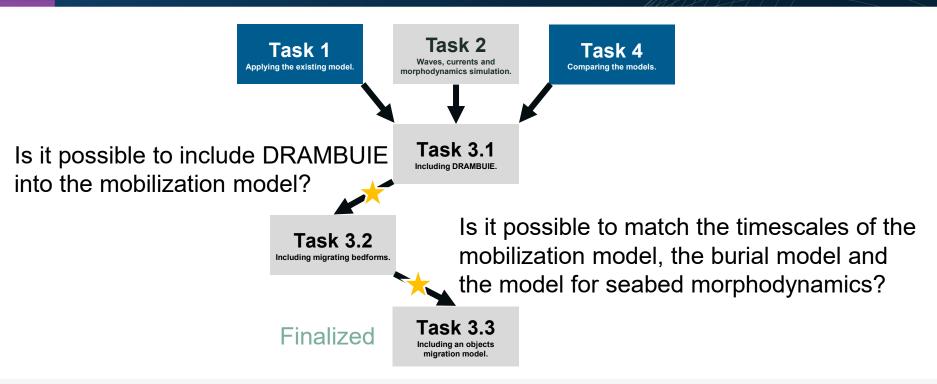
Developing and running Simulations (LBM was planned).

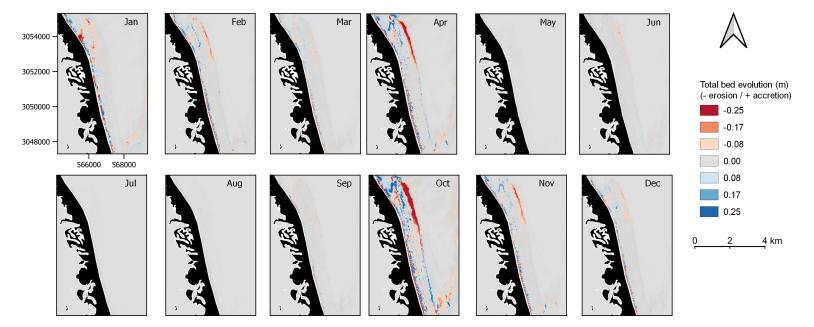
- TELEMAC was applied as it delivers more robust data.
- Spatial and temporal data of waves, currents and morpohodynamics.

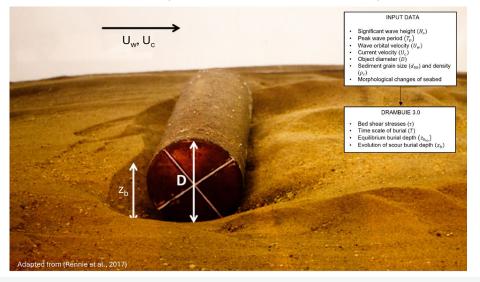

Finalized.



- Analyzing the existing models.
- Cross-comparison of the models.
- Improving DRAMBUIE.
- Preparing methods for objects migration and treatment of different sediment classes.
- Still in progress. Ending before 01/31/2025.







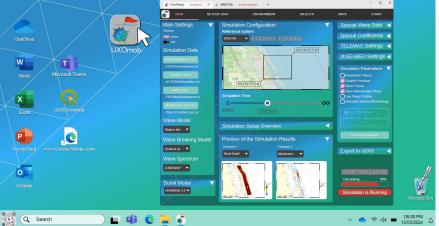
• TELEMAC Simulations (waves and Morphodynamics) for 2016 incl. Hurricane Matthew

 An improved burial prediction approach has been implemented, combining an equilibrium burial model (Friedrichs et al., 2018) and a time evolution model (Whitehouse, 1998).

Friedrichs, C., Rennie, S. E. and Brandt, A., 2018. Simple Parameterized Models for Predicting Mobility, Burial and re-exposure of underwater munitions. SERDP Final Report MR-2224, Virginia Institute of Marine, Science, William & Mary.

Rennie, S., Brandt, A. and Friedrichs, C., 2017. Initiation of motion and scour burial of objects underwater. Ocean Engineering, 131, 282-294.

Whitehouse, R., 1998. Scour at marine structures - A manual for practical applications. London: Thomas Telford.

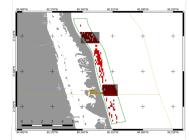


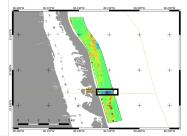
- Modern C++ Standard: C++20
- Modern Build System: bazel
 - Codebase Size:
- 336 Files
- 35311 code lines
- 9491 comment lines
- 12 Interfaces
- Testing:
 - Fully automated static and dynamic code quality ensurance
 - 525 Unit and Integration Tests
 - 14298 code lines

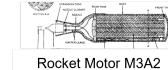
Peter Menzel, Richard Whitehouse, Tommaso Attili, Sebastian Escobar, Daniel Klembt, Mirko Rummelhagen, Nick Tavouktsoglou

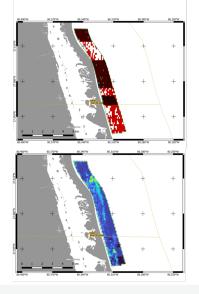
Several Interfaces possible: (App, Shell, Webbrowser,...)

- Dependencies:
 - Fully integrated external dependencies
 - Fully automated deployment of external dependencies

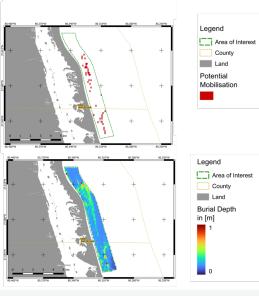


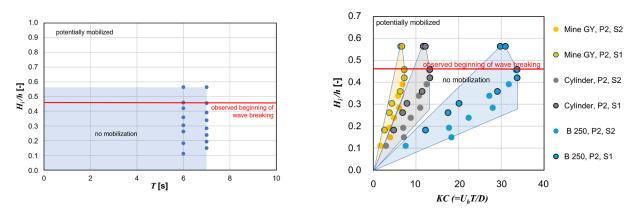



1000 lbs General Purpose Bomb



500 lbs General Purpose Bomb





155 mm HE 107

Verification

Menzel, P.; Wolters, G.; Drews, A.; Real scale experiments on the wave-induced burial and mobilization of Unexploded Ordnance on the seafloor; Applied Ocean Research; Volume 154; 2025; 104342; ISSN 0141-1187; https://doi.org/10.1016/j.apor.2024.104342.

FLSEVIER		ble at ScienceDirect	AND DESCRIPTION OF ADDRESS	
FLSEVIER			OCEAN	
ELSEVIER	Applied Oce	an Research	RESEARCH	
	iournal homepage: www	elsevier.com/locate/apor	~~~~	
Contract of Florida	, ,,,			
Real scale experiments of	on the wave-induced	burial and mobilization of	Cherth Roc Lipstalines	
Unexploded Ordnance of	on the seafloor			
Peter Menzel a,b,c,*, Guido Wol				
⁶ TonneT 150 Grahlt, Eisenbelmäingsweg 2a, Lehr ⁶ Cornus Works Grahlt, Ernst-Risck-Str. 6, Kählun	phora 18225, Germany			
⁴ Rostock Institute for Ocean Technologies GmbH, ⁴ Delaares, Boussinespeeg 1, Delft, 2629 HV, Neth	Alter Hafen Sid 3, Rostock 18069, German	y		
Royal Haskoning DHV, HonoyComb, Bilmand Str	eet, Liverpool, 13 9NG, United Kingdom			
ARTICLE INFO	ABSTRACT			
Kowork:	As a result of armed conflicts, huge amounts of Unexploded Ordnance devices (UXO) and Discarded Munition			
U30 Mahiization	Material (DMM) are expected to be located on the seafloor, especially in coastal regions. During Offshore Construction, strategical site monitoring and systematic remediation activities, the behaviour of such objects			
Dorial	in waves and currents is of buge interest as potential mobilization of objects after a survey or clearance activity ould change the situational picture again. From findings and reports it often is assumed that UNO and DMM tend to migrate over the seafloor for long distances. Here, nativopogenic effects like liking or dredging			
Experiments				
	activities are underestimated. More scientific approaches clearly show that mobilization and migration of			
	UXO over long distances does not occur. However, theoretical analysis remain theories until they are proven by experiments. For this reason, three large representative objects were investigated under real scale wave			
	conditions in the Delta Flume of Deltares. The objects represent real scale models of UXO found in the North Sea as well as academically shaped objects. All objects as well as the Flume Tank were intensively instrumented			
	typical sand as found in the North Sea and the seabed morphology and soil conditions were closely monitored during the experiments. The experiments support the theoretical models that predict burial but no mobilization			
	also under extreme wave con			
1. Introduction		certain safety region, are usually cleaned from critic	al objects (Webper	
		and Frey, 2022). After such clearance activities, the	area usually is de-	
As a result of warlike actions, hug		clared as free from UXO for a certain time frame. The		
nance devices (UXO) and Discarded		time of the certificate is often based on caution ra		
expected to rest on the floor of the or North- and Baltic Sea, 1.6 million tons of		process knowledge. The main driver for this is the as and DMM could migrate over larger distances than		
North- and Baltic Sea, 1.6 million tons o be located on and in the seafloor (Böttel		due to wave and current actions. During the last ve		
are expected to be not fused and most o		in understanding of the physical processes was ac		
active anymore due to ageing processes		process of objects is mainly investigated by the nav	ies. Here, different	
a potential risk to humans in different v		effects need to be considered. The process of self-		
compound becomes more and more exp	posed to the water and thus can	scour is caused by a local increase of the shear stres	ses due to the flow	
find its path into the marine food chai		around the objects. Due to this, the local sediment disturbed and erosion is found, which leads to a fail		
preparation of ground penetrating offsh		ing sediment below the object. The object changes its		
cable laying activities, the potential ris intense contact needs to be assessed. /		vertical direction (downward) (Menzel et al., 2018; I	nman and Jenkins,	
regions of direct impact of ground pen		1996; Rennie et al., 2017; Chu et al., 2022). This ve	rtical displacement	
* Corresponding author at: TenneT TSO				
		v.com (G. Wolters), anja.drews@tennet.eu (A. Drews). w.rostock-institute.com (P. Menzel), https://www.deltares.co	m (G. Wolters)	
DRLE https://www.tennet.eu, https:// https://www.tennet.eu (A. Drews).	www.conus-woiks.com, https://www	wronow unountercom (r. menzel), https://www.deltareco	(u. woxes),	

Next Steps

- Final Reporting
- Executive Summary
- Voluntary Site Manager Report
- Proposed additional deliverables
 - Webinar
 - Stakeholder Presentation
- Final Invoicing: 02/15/2025

Technology Transfer

- Webinar
- Stakeholder Presentation
- Voluntary Site Manager Report
- Further Transfer through ESTCP was not supported.

• No Issues.

BACKUP MATERIAL

These charts are required, but will only be briefed if questions arise.

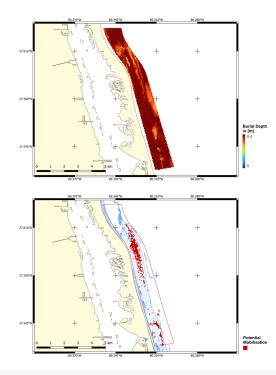
MR21-1081: Model roundup and extension for the current- and wave-induced burial, re-exposure, mobilization and migration of UXO and DMM

Performers: Peter Menzel, Tommaso Attili, Karsten Breddermann, Sebastian Escobar, Daniel Klembt, Michiel Knaapen, Helen Morrison, Mirko Rummelhagen, Nick Tavouktsoglou, Richard Whitehouse

Technology Focus

Simulation model, based on analytical approaches for complex processes

Research Objectives


Combining different models and applying them on a FUDS.

Project Progress and Results

- UXOmob combines the mobilization model with the new DRAMBUIE 3.0 and reproduces scour burial, morphodynamics and mobilization.
- A Drift Model is running separately.
- A close stakeholder dialog was introduced and the requirements of the site manager are addressed.

Technology Transition

• Handover of all results and a full documentation to SERDP.

Plain Language Summary

- During the 2nd World War, Bombs and Rocket were lost in the Ocean close to our Beaches. They can be very dangerous.
- We answer the following questions:
 - Are they covered with sand today? If yes, how much sand?
 - Could it be possible that the sand will removed by currents and waves so that the Bombs are not covered anymore?
 - Can waves or currents push the Bombs so that they roll maybe in direction of the beach?
- We are doing this by running a very complex computer program. For this, we also investigate, what happens on the seafloor.
- The is a computer program and a report for the people who have to search and recover the Bombs. With the program we predicted, where to look for the Bombs.

Impact to DoD Mission

- Two Stakeholder Meeting with the Site Manager were held.
- A common Proposal with CENHC was submitted. (rejected)
- In general, the Site Manager and CEHNC directly could use the results for planning and risk assessments.
- In general, the software could be used by CEHNC to produce the results by themselves.

Action Items

No open Action Items.

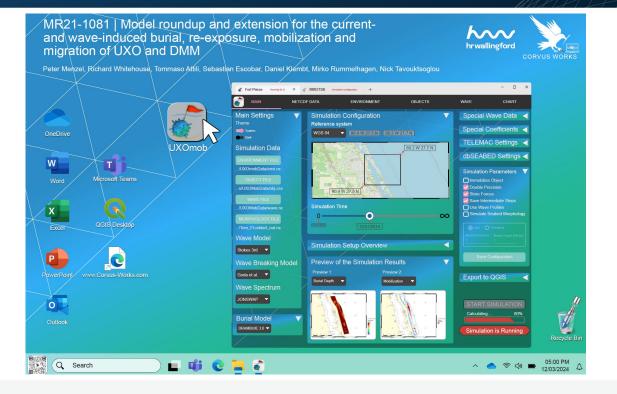
Publications

Published:

- Escobar, S., Whitehouse, R. J. S., Benson, T., & Knaapen, M. A. (2023). Hydro-morphodynamics modelling for the mobilization assessment of UXOs and DMMs. Proceedings of the 29th TELEMAC-MASCARET Users Conference 2023.
- Klembt, D.; Menzel, P.; Breddermann, K.; Wranik, H.; Miethe, T.; Determination of the drag, lift and added mass coefficients of special unexploded ordnance (UXO) as a function of the Reynolds number and the burial depth. Applied Ocean Research, 146 (2024) 103946, https://doi.org/10.1016/j.apor.2024.103946
- Menzel, P.; Wolters, G.; Drews, A.; Real scale experiments on the wave-induced burial and mobilization of Unexploded Ordnance on the seafloor; Applied Ocean Research; Volume 154; 2025; 104342; ISSN 0141-1187; https://doi.org/10.1016/j.apor.2024.104342.

Submitted:

 Escobar, S., Attili, T., Whitehouse, R. J. S., Benson, T., & Knaapen, M. A. (2024). Hindcast modeling of morphodynamic changes and UXO burial caused by Hurricane Matthew 2016, Fort Pierce, Florida.

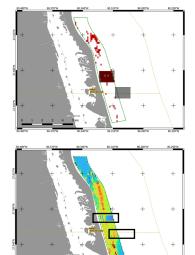


Literature Cited

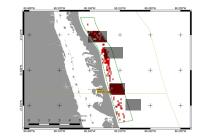
- Escobar, S., Whitehouse, R., Benson, T., & Knaapen, M. (2023). Hydro-morphodynamics modelling for the mobilization assessment of UXOs and DMMs. In Proceedings of the 29th telemac-mascaret users conference 2023. Karlsruhe, Germany.
- Friedrichs, C., Rennie, S. E. and Brandt, A., 2018. Simple Parameterized Models for Predicting Mobility, Burial and re-exposure of underwater munitions. SERDP Final Report MR-2224, Virginia Institute of Marine, Science, William & Mary.
- Rennie, S., Brandt, A. and Friedrichs, C., 2017. Initiation of motion and scour burial of objects underwater. Ocean Engineering, 131, 282-294.
- Whitehouse, R., 1998. Scour at marine structures A manual for practical applications. London: Thomas Telford.

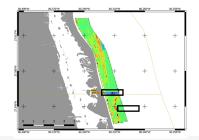
Additional Slide(s) for High-Quality Photos

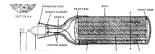
Additional Slide(s) for High-Quality Photos

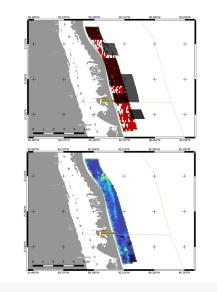


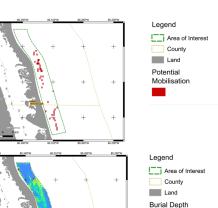
Additional Slide(s) for High-Quality Photos




1000 lbs General Purpose Bomb




500 lbs General Purpose Bomb



Rocket Motor M3A2

155 mm HE 107

in [m]

Acronym List

CEHNC U.S. Army Engineering and Support Center, Huntsville DMM Discarded Military Munitions DRAMBUIE Defense Research Agency Mine Burial Environment

UXO Unexploded Ordnance Devices

