

TETRA TECH

Measurement Uncertainty in Predicting Diameter from Polarizabilities during Anomaly Resolution

T. Jeffrey Gamey

SAGEEP 2025

- Determine the reliable limits for predicting source size from polarizability matches
- Highlight some limits on predicting source parameters from polarizability curve interpretation
- Determine the root cause of any discrepancies
- Communicate those limits to avoid disagreements

Polarizability Size Metric

- UX-Analyze uses polarizability size rather than diameter size
- Divided into bins at 40mm and 100mm
- Diameter for a given pol size is roughly +/-30mm
- 32% failure rate
- 60mm M5 mortar may be Small or Medium depending on orientation

4

Diameter Size Metrics

- Early ESTCP tests achieved 90% correlation
- Used 50mm and 100mm as dividing line between bins
- But inconsistent quality, variable thresholds, different libraries

Methodology

- Repeat this test using DoD test stand measurements
- Self-match the DoD Library items to each other and compare the original diameter to the diameter of the matching item
- This is near perfect data, if we can't get this to meet the MQO then there's something wrong with the MQO
- Test different match metrics
- Examine the correlation for trends
- Apply various size matching approaches to determine how many fail

Results

- All of these targets pass the metric for a match to the original pols
- Correlation decreases as Match decreases
- Even less correlation with larger targets

Diameter of Top 10 Matches >0.85

250

Alt6 🛯 Alt5 😑 Alt4 🖷 Alt3 😑 Alt2 🔘 Alt1

Diameter of Top 10 Matches >0.80

Default Approach

- Fixed size bins
 - § S 0-40mm
 - § M 40-100mm
 - § L 100-250mm
- At 0.85 match metric success rate with v1.1 Library data is 81% (19% nonconformance)

Diameter of Top 10 Matches >0.85

Alternate Approaches

- Fixed bins 19% failure
- 20mm overlap 4% failure
- +/-30mm
 17% failure
- 50%-200% 3% failure

Diameter of Top 10 Matches >0.85

Diameter of Top 10 Matches >0.85

Diameter of Top 10 Matches >0.85

Alternate Approaches

- Fixed bins
 - § Shifting boundary lines doesn't really improve anything
 - **§** What you gain on one bin you lose on another
- Overlapping bins
 - Soverlap produces very loose tolerances, SM bin (predicted 30mm-50mm) extends from 0mm-110mm of source diameter
- +/-30mm
 - **§** Simpler to implement but failures increase with target size
 - § Improved failure rate in small targets only
- 50%-200%
 - § Simple to implement
 - § Consistent improvement across all size ranges

TOI	Match	Orient	Diam	Pol Color
MISO40	1.00	Н	59mm	Black
76mm HEAT	1.00	V-U	76mm	Not shown
MISO80	0.96	Н	60mm	Not shown
18-lb solid shot	0.95	V-U	75mm	Blue
81mm projectile	0.94	V-U	81mm	Not shown
2.75in rocket WH	0.93	V-D	70mm	Not shown
AP landmine	0.92	V-U	65mm	Not shown
3.5in rocket motor	0.91	Н	89mm*/53mm**	Green
81mm mortar	0.91	V-D	81mm	Not shown
3in mortar	0.88	V-D	81mm	Not shown
18-lb solid shot	0.87	Н	75mm	Not shown
105mm Sabot	0.86	Н	35mm*/105mm**	Orange
3.5in rocket	0.86	V-D	89mm	Not shown
3.5in rocket motor	0.84	V-U	89mm*/53mm**	Not shown
81mm mortar	0.83	Н	81mm	Not shown
37mm projectile	0.81	Н	37mm	Red

Example – MISO40

- Differences in pols on right are not necessarily diagnostic of diam
- Difference in pols on left are extrinsic
- Two identical items in different orientations, both pass the match metric

Root Cause

- Sensors do not measure diameter, they measure EM response to stimulus
- Inversion does not measure diameter, it assumes the source is a dipole
- The more the target deviates from a dipole, the more the assumption is invalid, even if the fit and match meet the predefined metrics
- Classic spherical cow problem

- Polarizabilities are affected by more than just target size and shape, including some extrinsic properties
- Extrinsic properties may have an equal or greater impact on polarizability than size/shape, even when passing fit and match metrics
- The only intrinsic property measured by inversion is electromagnetic induction, size and shape are second order estimates
- Diameter estimates come with large error bars
- A 50%-200% size metric is recommended to reflect the level of accuracy that can be supported by test stand data

Corrective Actions

- As an industry we need to be more transparent about how AGC works
- Pols are a function of intrinsic properties (*if you ignore the effect of extrinsic properties)
- Pols are a function of the source size/shape/thickness (*plus other things, as long as it's not too complex, or too large, or too shallow)
- Pols can make predictions about the source diameter (*within 50%-200% error for test stand data)

REALITY

PHYSICS