

Highly Integrated Autonomous ROV-based 3DEM for Underwater AGC

MR22-7454

Greg Schultz

White River Technologies

In Progress Review Meeting

21 MAY 2025

Project Team

Dr. Gregory Schultz (PI), WRT EM Sensing & UXO Tech Development

Dr. Joshua Elliott, WRT
Undersea Mechatronics, Robotics, &
Automation & Controls

Cristel Callupe, WRT
Lead EM System Engineer

University of New Hampshire

* College of Engineering and Physical Sciences

Dr. Ozzy Oruc, Citadel←UNH Undersea Robotics & Naval Design

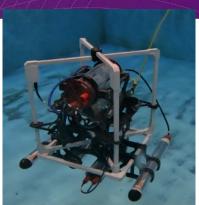
DB Bhowmick, WRT←UNH Robotics Test Engineer

Bottom Line Up Front

Technology Focus

- Cost-effective methods for integrated Remotely Operative Vehicles & underwater 3DEM technology for shallow water UXO site assessment
- ROV-based AGC with optional deployment from an ASV

Accomplishments

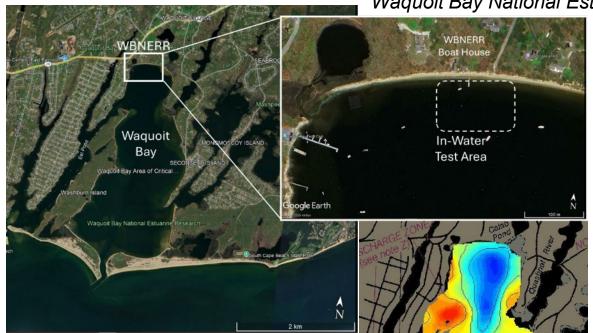

- Transitioned mAPEX from BlueROV-2 to MSS Defender ROV unit
- Validated dynamic surveying and static AGC via land & in-water tests
- Implemented coherent noise filtering approach to reduce ROV motor noise
- Completed demonstration plan for limited in-water data collection

Challenges

- Significantly reduced scope of project → abbreviated demonstration planned
- Geo-positioning and navigation of ROV-EM currently less accurate than desired

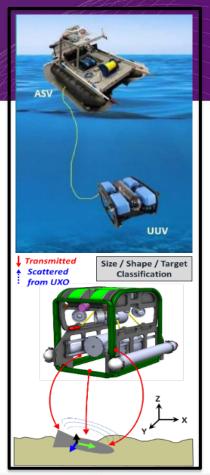
Implementation Support

• In-water demonstration will be conducted at Waquoit Bay, MA (WBNERR)



Site Description

Waquoit Bay National Estuarine Research Reserve (WBNERR)



Sandy bottom; 2-3 ft tidal range; ~30PSU salinity (42 mS/cm); Maximum depth 2.5 meters (0.25 meter contours in bathy image)

Technical Approach

- 1. Integrate underwater 3DEM UXO classification with marine autonomy control systems
- 2. Validate tightly integrated form factor on small ROV with autonomous survey control
- Assess integrated solution: ASV-based launch & positioning of ROV-EM system (centralized communication, coordination, and positioning)
- 4. Demonstrate full scale operations at a prepared test site
- 5. Develop transition products including use-case scenarios, best operating practices, and docs

Technical Approach

Integration Testing

ROV2-EM Integration / Testing

- Simulations: EM + Hydro + CAD
- Hydrodynamic feasibility analysis

3DEM & Hydrodynamic Optimization

- Embedded EM design
- Initial noise / performance testing

Controlled Tests

- UNH indoor test basin
- UNH open water basin

System Prep & Proveout

ASV-ROV Control / Positioning

- Launch & recovery
- UGPS configuration & testing
- Mission planning & auto-control

Data Processing Workflow

Detection & classification

Integrated System Proveouts

- Waypoint / bottom following
- UNH Engineering validation

<u>Demo & Analysis</u>

Preparation

• Site selection / set up; demo plan

Demonstration

- Mobilize & collect data
- Analysis & report

Transition Assessment

Production Operating Envelope

Best implementation; cost analysis

Transition Outreach / Pilot Study

- Usage / SOPs; outreach products
- Pilot study use-case

<u>Go/No-go Criteria</u>: Proven prototype integrated system control & EM AGC performance

Performance Objectives

Objective	Example Metric	Example Criteria					
Waypoint Navigation	$\Delta R = (\Delta N^2 + \Delta E^2)^{1/2}$	Δ R <1m; 0.5% DT; σ R < 50cm					
Bottom Following	DA = cmd_Alt - obs_Alt	ΔZ < 20 cm; σZ < 20 cm					
Detection SNR (or P _D)	SNR = max(A _{signal}) ² / max(A _{noise}) ²	SNR>9 dB or Pd>0.95 w/ Pfa~0.01					
Clutter Rejection (AGC)	Pclass = # True Labels / #TOI	Clutter Rejection >65%					
Detection Accuracy	Δ N & Δ E = est_XY - true_XY	ΔN & ΔE < 100 cm					
Coverage Rate	Acres / day	1 acre/day; full coverage					
Ease of Use & Stability	Operator Observations	Compared to other Ops/ROVs					

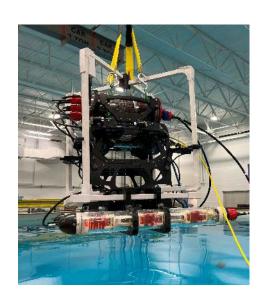
Technical Progress Summary

Task 1. ROV+3DEM Integration & Testing

- Transitioned from BlueROV to MSS Defender ROV
- Hydrodynamic Optimization (Trim & Balance)

Task 2. ASV-ROV Configuration & Mission Control

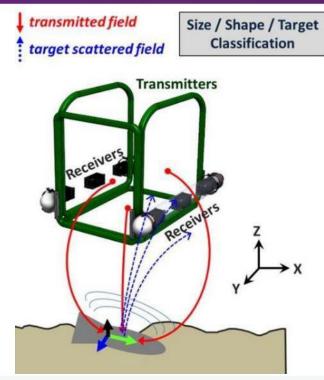
Demonstrated ROV deployment / recovery

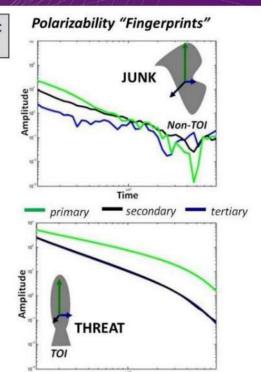

Task 3. Integrated System Prep & Proveouts

- Waypoint mission planning & bottom tracking
- Demonstration Plan (abbreviated)

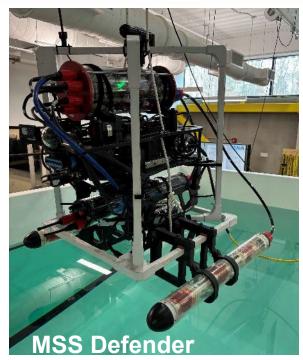
Task 4. Field Demonstration

Limited in-water demo conducted

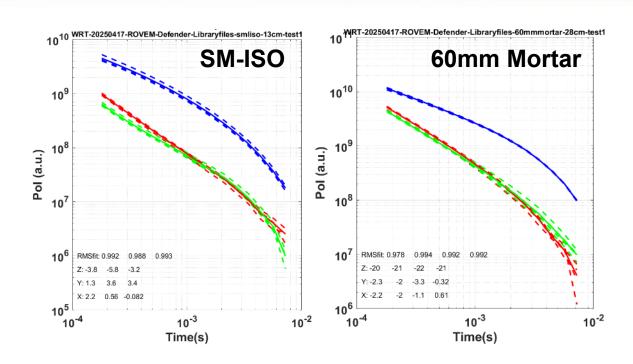

Task 5. Transition Assessment

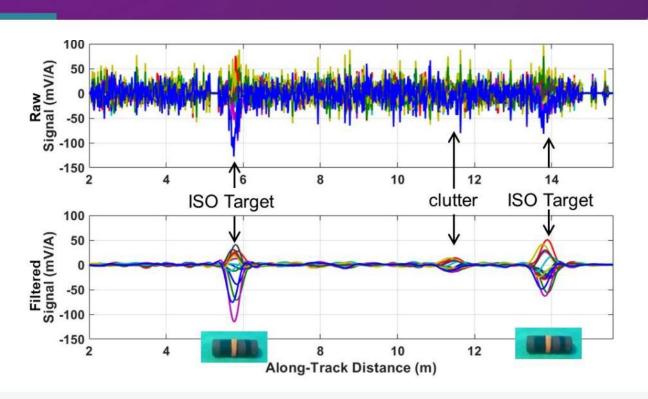


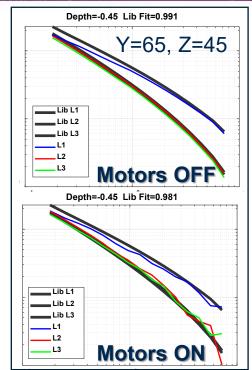
ROV+APEX 3DEM Integration Design



Transition BROV to MSS Defender ROV



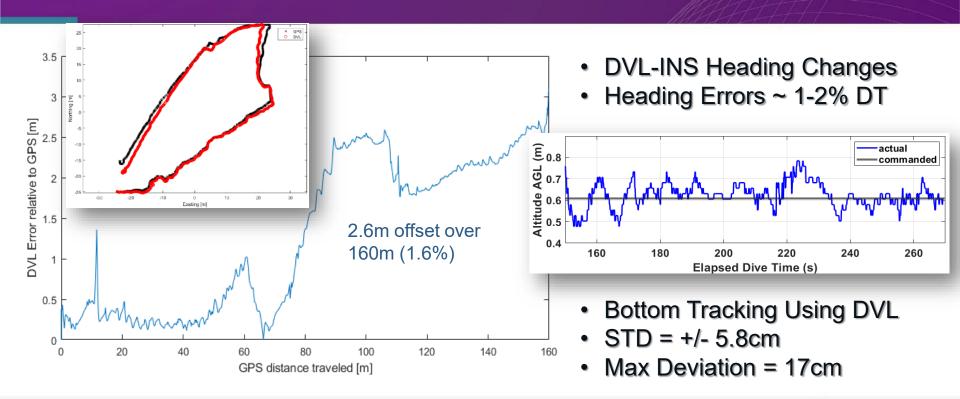

Defender ROV-EM Validation

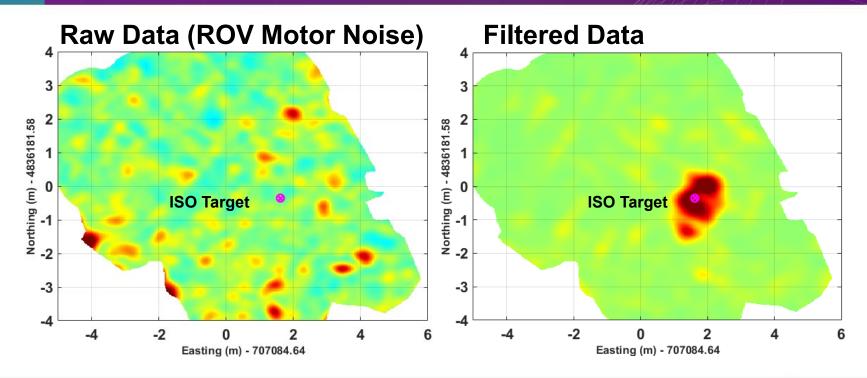


Defender ROV-EM Validation

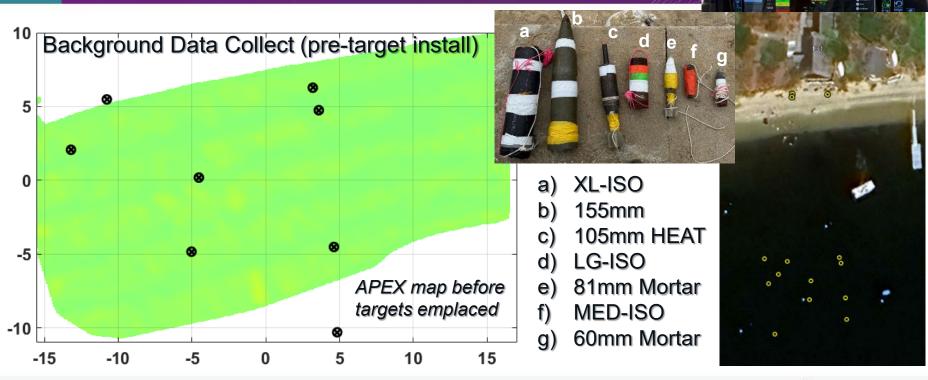
Defender ROV-EM Trim & Balance

- UNH & WHOI Tanks
- Hydrostatic Trim/Bal
- Hydrodynamic Proveout

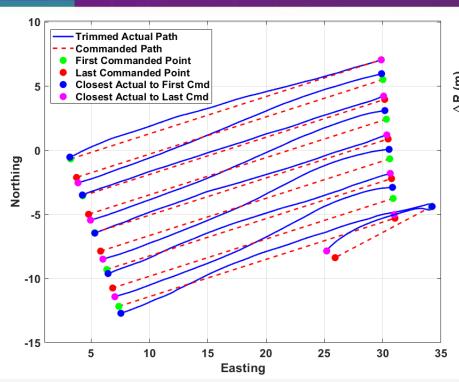


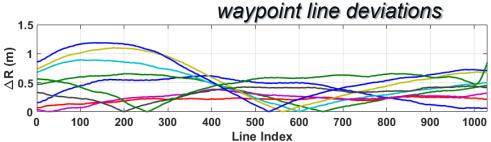


Nav/Pos & Bottom Tracking

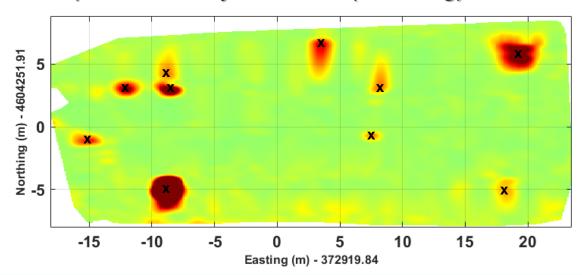


In-Water Engineering Tests

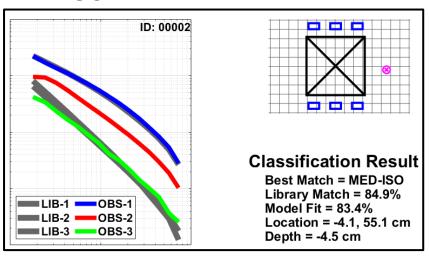


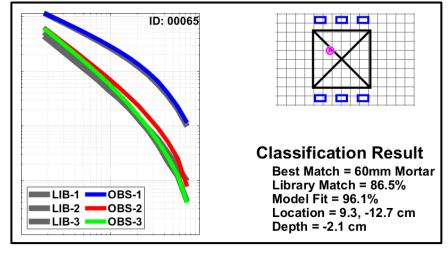


WHITE RIVER

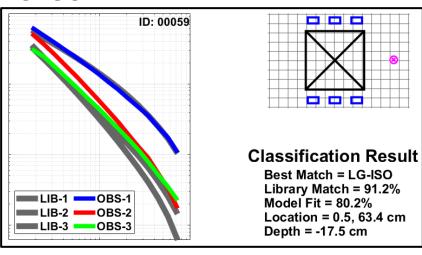


- Waypoint line deviations from commanded
- Line spacing 1.2m
- Mean $\Delta R = 0.38m$, Max $\Delta R = 1.24m$
- Tether catenary affects waypoint line track
- Analyzing heading drift influence on errors

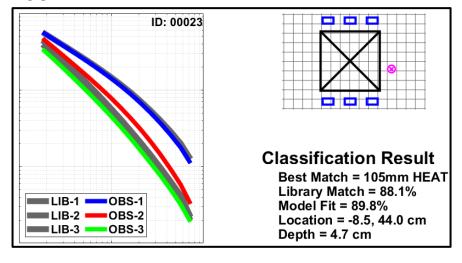

- Filtered dynamic data reveal target detections
- Line track and coverage precision needed to improve anomaly resolution (smearing)



MED-ISO

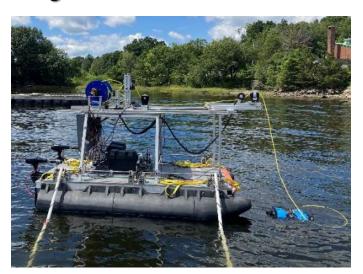


60mm Mortar



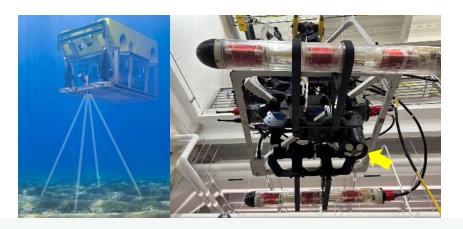
LG-ISO

105mm HEAT



ASV Integration Design

- Propulsion Control
- Station Keeping
- Autonomous Path-planning
- Tether Tensioning System
- ROV Positioning System
- ROV Launch & Recovery



Issues

- UGPS SBL positioning not stable enough for autonomous surveying
- MEMS INS-aided DVL (Nortek) heading errors observed when APEX Transmitters are ON prior to sufficient DVL lock – working with VideoRay and GSSIQ (EODWorkspace) to investigate

Unit	Accuracy	INS?		
WaterLinked A50	1 or 0.1%	Υ		
Cerulean ST 650	1%	N		
Nortek DVL 1000	0.3%	Υ		
Nortek Nucleus 1000	0.3%	Υ		

Next Steps

- Investigate INS-aided DVL Calibration Prior to APEX TX ON
- Improve waypoint navigation for dynamic ROV-EM AGC
- Dockside ROV-EM in-water tests (Lake Pinneo, NH)
- Demonstration Plan revision (as needed)
- Execute limited demonstration at Waquoit Bay, Massachusetts
- Pursue alternative direct mount on Defender and/or SeaEye Falcon
- Implement new electronics bottle (77% smaller) & modular MAG payload (via NAVSEA MESR program)

Technology Transfer

1. Production Transition Assessment

- Define operating envelope for full-scale implementation / operational concepts
- Cost models: 1) "wet" lease option, 2) lease/contract option

2. Outreach Products & Information Dissemination

- SERDP Webinar (NOV 2024), MARELEC & SAGEEP Presentations (APR 2025)
- Pilot study use-case description ("sample problem")
- Complexities of ROV-based AGC White Paper (submitted to SEMS)
- Training and information sessions (e.g., NAOC, M2S2, SAGEEP)
- Social media posts (via SERDP-ESTCP prog. office)

3. Govt/Commercial Demonstrations

- Collaboration with NAVFAC & USACE on Demonstrations / Live Site Transition Pilots
- Demonstrations with interested prime contractors → direct transition

BACKUP MATERIAL

These charts are required and will be used by the Program Office but may not be presented.

MR22-7454: Highly Integrated Autonomous ROV-based 3DEM for Underwater AGC

White River Technologies, Inc.

Technology Focus

 Cost-effective methods for highly-integrated Remotely Operative Vehicles and underwater 3D EM technology for shallow water UXO site assessment

Demonstration Sites

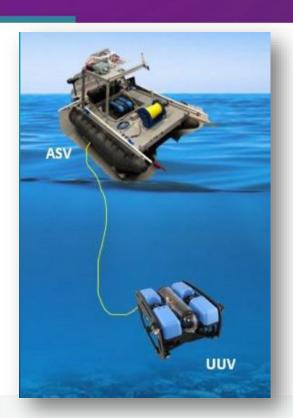
Demo Site: Sequim Bay UXO Test Area

Demonstration Objectives

 Implement and demonstrate integrated inspection-class ROV + 3DEM technology to address seabed UXO surveying

Project Progress and Results

- · Completed integration design and performance predictions
- Verified prototype ROV-EM unit during in-water tests
- Assessed and quantified underwater positioning (UGPS) accuracy
- Initiated Autonomous Surface Vehicle deployment configuration


Implementation Outlook

• On-track to complete modifications and optimization toward initial open water tests with integrated UGPS, ASV, and ROV-EM system

Demonstration System Technology

- GPS: Use when Vehicle on the surface
 - Constant GPS updates
 - Minimal navigation error build up
- USBL: Use when Vehicle is below surface, no bottom lock
 - Topside GPS combined with USBL establishes vehicle location.
 - Less precise navigation
- DVL: Use when Vehicle has bottom lock
 - No GPS update
 - Navigation error builds up over time

Plain Language Summary

- Shallow water UXO sites (<5-10m water depth) lack effective methods to detect and classify individual munitions, especially where bottom conditions challenge acoustics
- Previous ROV-based classification techniques suffered from hydrodynamic maneuverability and efficient mobilization, positioning, and survey control
- Cost-effective methods that apply to a wide range of nearshore, riverine, and lacustrine sites needed to fill gap between land-based AGC and offshore surveying methods

Action Items

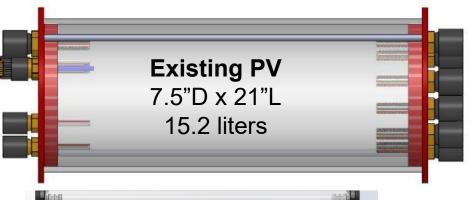
- Submit White Paper on complexities of AGC on ROVs (submitted to SEMS)
- 2. Complete Interim Report on Underwater GPS Short-baseline acoustic positioning assessment (submitted to SEMS)
- Complete Demonstration Plan draft (submitted to SEMS)
- Updated expenditures in SEMS (completed for FY24)

Impact to DoD Mission

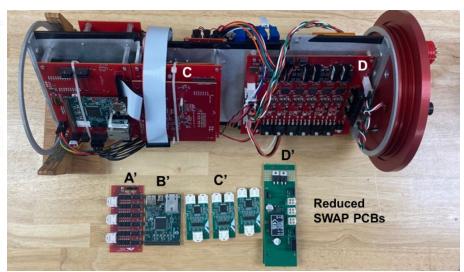
- The Program Office wants to convey the significance of your research to DoD leadership, Congress, and the broader community.
 - What's the most impactful thing that's happened since the last time you presented your work to us?
 - Why is this important?
 - How is your project advancing DoD capabilities?
 - Include high quality images

Publications

Provide a list of all publications, patents, awards, etc., resulting from this work.

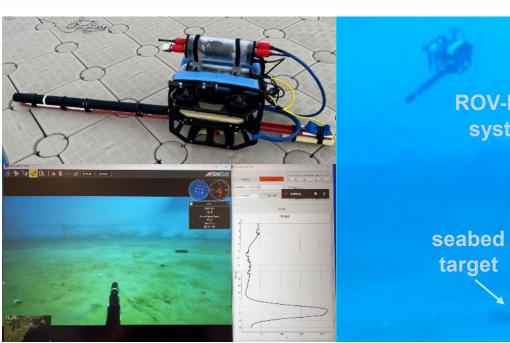

Literature Cited

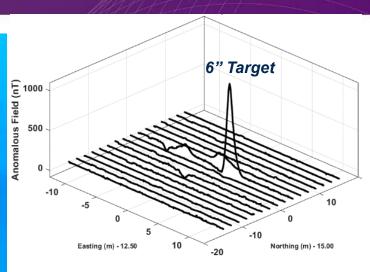
Provide a list of all the published work you cited in the presentation.


Task	CY22	CY23			CY24				CY25			
	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q 2	
1. ROV-EM Integration & Testing												
1.1. EM-ROV Integration/Optim.											İ	
1.2. Controlled Tests & Revisions		(a)	İ								1	
2. ASV-ROV Mission Control			ļ								-	
2.1. ASV-ROV Positioning			İ	(a)							-	
2.2. ASV-ROV Eng. Tests												
3. Integrated Sys. Prep/Proveout											- 1	
3.1. Engineering Verification Test					(b)		(b)					
3.2. Full Scale In-Water Test						#		(b)			- 1	
4. Field Demonstration												
4.1. Site Prep. & Demo Plan Develop											1	
4.2. Field Demo Data Collection									(b)	(b)		
5. Transition Assessment												
5.1. CONOPS Assessment											H	
5.2. Technology Transition & Docs											H	
Reporting		*	*	R *	*	*	*	P *	*	*	F	P

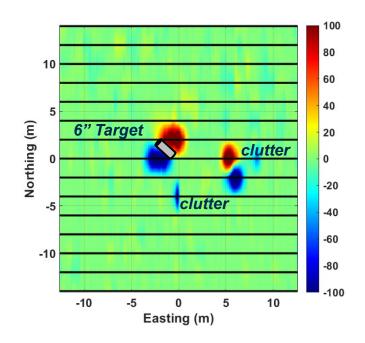
Electronics Upgrade (SWAP Reduction)

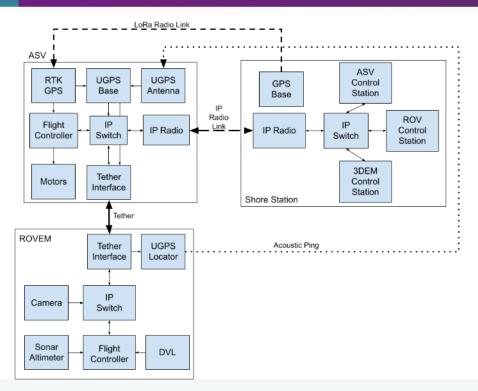
4"D x 16.5"L 3.4 liters

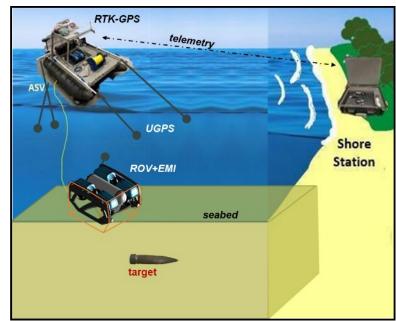

- >77% decrease in size (vol.)
- Validated on APEX cart unit


ROV-EM Direct Mount Variant

ROV-MAG Mapping System




ROV-MAG Mapping System



ROV-EM Integration

