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Technology Focus
• Develop advanced EMI models and systems to 
detect, locate and classify Underwater UXO 
targets. 
Research Objectives
 Understand diffusive propagations  of EMI 

fields in UW environments
 Mitigate the effects of conducting media on 

both the primary and secondary EMI fields
Project Progress and Results
 EMI signals’ and systems’ behaviors in UW 

environments were modeled 
 An experimental setup was built 
 A new scheme was developed for extracting 

targets true EMI responses
 The sensitivity of a primary EMI signal with 

respect to the Air/Water/Sediment boundary 
has been studied. 

MR-2728
Enhanced EMI Models and Systems for Underwater 

UXO Detection and Discrimination

Updated system  detects  a 
small and deep TOI 
accurately 

True

Naive



Social Media Content  
 EMI signals and sensors behaviors in UW environments were measured 

and modeled 
 A new scheme was developed for extracting targets true EMI responses

The results will be presented at the SAGEEP-2018 and SPIE-2018 Defense and security 
conferences and published in proceedings; 

Excitation: A 
Current source

Coil’s resonance 
frequencies 

Rx

Rocket 
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Problem Statement
● Detection and remediation of underwater UXO targets 

are more expensive than excavating the same targets 
on land

● Recently, advanced EMI sensors and models have 
provided excellent performance  for detecting and 
classifying subsurface metallic targets on land

. Thus, there are needs to develop better EMI models and 
systems to: 

 understand diffusive behaviors of EMI fields in UW environments
 develop enhanced EMI systems and signal processing approaches for 

UW targets detection and classification

However,  direct application of land-based methods to UW scenarios can lead 
to incorrect interpretations of UW EMI data
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Technical Objectives
● Develop forward and inverse EMI models to accurately 

account for the underlying physics of EMI fields in UW 
environments. 

● Investigate the behavior of diffusive EMI fields in the air-water-
seabed environment. 

● Assess  and mitigate the effects of conducting media on both 
the primary and secondary EMI fields.  

● Perform a preliminary assessment of the effectiveness of the 
enhanced models.

● (Optional) Research optimal transmitter current waveforms 
for optimizing a primary EM field strength.  
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Overview of UXO classification

Sensor data: d

p=F-1 [d ]
Inverse Operator

d =F [p]
Forward Operator

1. Data Collection 2. Data Inversion 
3. Decision  
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EMI Problem for  free space 
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EMI Problem for UW environment
Mathematical formulations: for land based and UW EMI problems 

Technical Background
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Land based EMI data DO NOT depend on phase changes/time 
delays. 
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EMI sensors in UW environment 

Full wave form Tx
current data for 
the TT coil. Data 
is taken in air. 

Turn on. 
Turn off. 

A 68 cm x 68cm square coil 
with 16 turns placed:

In air

in water

Current Source

Current Source

Use 3d EMI solvers for detailed characterization of EMI systems 
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EMI sensors in UW environment 

Excitation: A Current 
source

Coil’s resonance 
frequencies 

Rect: TEMTADS (TT)
Tx coil: 16 Turns; 
total wire length 42.5 
m; Excitation: A 
Current source

Model: The TT coil 
placed in: a) air and 
in water;  The Tx
coil’s resonance 
frequency moves 
below 100 kHz. 
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EMI sensors in UW environment … 

Our model predicts/ 
explains noise 
spectra observed in 
actual data. 

Recent experimental data: Courtesy of SERDP MR-2409 interim report 
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Total Primary Magnetic field 
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Experimental Setup 

Pool water

~ 17 cm
Rx

Tx
~ 8 cm

HFEMI Tx & Rx coils are about 27 cm in diameter, 12
turns. Approx distances from the coil centers to the
upper and lower water surfaces are indicated.

A schematic diagram of the experimental data 
collection  

60
 c

m

3 m
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I-LowSalt: HFEMI Data
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Vertical shots at pool center with no target other than the 

water

• Low Salt (1.26 S/m) case minus No Salt case

• High Salt (4.8 S/m) case minus No Salt case

Comparisons between data and model

In salt water we 
see a distinct 
phase shift that 
one must 
account for in 
both cases.



17

Recovering target’s true signal: experimental 
validation 

When we took data, rocket 
and coil were floating directly 

below the Rx

Rx

Rocket floats essentially in 
touch with surface water but 
not significantly submerged

Vertical shot of floating rocket minus 
background water at 4.58 S/m

Tx is under the pool
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True

Naive

Here, a “naïve” calculation 
of a rocket’s response 
simply subtracts the salt 
water background signal 
from the data, as .

For the true, intrinsic 
rocket response, one must 
also scale the result  to 
account for the SW 
alteration of the primary 
field.

rocket rocket sw swnaive F S S 

 . /rocket rocket sw sw swtrue F S S S 

A New Scheme for Extracting Targets True 
EMI Responses 
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Boundary Effects 
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Sensor standoff effects 
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Complex Image method to account UW effects
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UW EMI data DO depend on phase changes/time delays. 
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Magnetic dipole in UW environment: offset 
effects 
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Targets EMI response 
Comparisons between numerical (the MAS) and experimental data

Frequency Domain
GEM-3D data obtained from SERDP-1321 final report 
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UW environment modifies signals at high frequencies (early time). 
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Magnetic dipole in UW environment: 
Contributions from different terms 
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Summary 

Conducting environment distorts the both primary and 
secondary magnetic fields at early times/high frequencies

Air/Water/Sediment boundaries affect on the EMI signals

Signal distortion is a function of separation distances 
between the target and the Tx coil, and between the target 
and observation points

Larger separation distance  Target’s EMI signals 
distortions  extend at later times

A new scheme was developed for extracting targets true 
EMI responses
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BACKUP MATERIAL
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For the land-based problem at high frequencies (or early 
times) we have developed a Thin-Skin Approximation (TSA) 
for the MAS

The MAS/TSA breaks down for UW EMI problems; this forced us to employ the 
MAS/SIBC  (SIBC: Surface Impedance Boundary Condition) 

SIBC at high frequencies:  
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Heterogeneous UXO‐like object

There is significant interaction between the object and the conducting water;
this depends on which part is closer to the sensor

EMI problems studies
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A sphere in UW experimental data  

Graph courtesy of SERDP MR 2321 Final Report By H. Frank Morrison, 
Marine Advanced Research, Inc
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h = 25 cm

L

a)

A pipe in a conducting environment 

Pipe thicknesses is 10 mm Pipe thicknesses is 5 mm
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Comparisons between in air and in water data for 
105 mm 
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UW TEMTADS data

Measured EMI 
signals for a 4”, 
submerged 
aluminum sphere
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Asses current EMI sensors’ capabilities   
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3d EMI solvers for systems detailed characterization  
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Targets EMI response in TD 
Numerical studies: EMI response from a conducting and permeable sphere in TD,   which 
is illuminated with an idealized EM-61 sensor 

 In UW, target responses in early time gates differ from those in free space; 
 These differences move to later time channels when distances between 

transmitter and targets increase

h = 25 cm

L

sphere


