Data Processing Challenges in Marine AGC

Kevin Kingdon

Acquiring Marine AGC Data: One-Pass Surveys

Acres Surveyed

	AOC A	AOC B	AOC C
Shallow	32.0	3.0	29.9
Deep	28.9	14.6	62.8

Marine AGC Challenges

- 1. Noise source from active thrusters
- 2. Positioning uncertainties
- 3. Cost

- Develop methods to improve characterizing system performance, such that unnecessary recollects and gap fills are minimized
- Implement methods that account for variable noise and positional uncertainties

Coverage MQOs

- Current MQO uses a swath width of 3.4m or 1.7m from the center of the array to the edges.
- Advantage: Computationally easy
- Disadvantages
 - Assumes all components for each Tx firing are good quality. Ie low noise, functioning normally
 - One bad Rx cube and we should discard entire line for this coverage analysis to be valid.

Modified MQO: Dynamic Buffer Analysis

- Use forward modelling to determine which locations in the survey do not meet the detection objective.
- Inputs:
 - Altitude
 - Noise levels
 - Detection objective (e.g. target type and depth)

Noise, Altitude and Data Coverage: Dynamic Buffer Analysis

Advanced Geophysical Classification

 Use a dipole signal model and principal axis polarizabilities for distinguishing potential UXO from scrap

Principal axis polarizabilities

Data from different

sensor/object geometries

Classification results based on submitted diglist

Name
100-lb Bomb
105mm
106mm
155mm
2.36-in
2.75-in
25-lb Bomb
250-lb Bomb
3.5-in
37mm
40mm
5-in
5-lb Bomb
60mm
81mm
90mm
Dual Mode HE Rocket
Fuze
Grenade
ISO Medium
ISO Small
Plate 5-lb
Rocket Motor

Acquiring AGC Data: One-Pass Surveys in AOC A (Shallow)

Library type	Count
40mm	23
Fuze	21
2.36-in	15
60mm	6
2.75-in	3
Grenade	2
25-lb Bomb	1
81mm	1
105mm	1
90mm	1
Dual Mode HE Rocket	1
3.5-in	1
37mm	1

Acquiring AGC Data: One-Pass Surveys in AOC A (Shallow)

AOC A Shallow: Best 30 matches

Library type	Count
40mm	23
Fuze	21
2.36-in	15
60mm	6
2.75-in	3
Grenade	2
25-lb Bomb	1
81mm	1
105mm	1
90mm	1
Dual Mode HE Rocket	1
3.5-in	1
37mm	1

Library type	Count
2.36-in	111
60mm	57
Rocket Motor	43
90mm	34
105mm	28
2.75-in	24
155mm	19
81mm	19
Fuze	19
3.5-in	16
100-lb Bomb	11
5-in	8
37mm	8
25-lb Bomb	6
250-lb Bomb	6
Dual Mode HE Rocket	6
5-lb Bomb	5
106mm	3
Grenade	1

Library type	Count
2.36-in	111
60mm	57
Rocket Motor	43
90mm	34
105mm	28
2.75-in	24
155mm	19
81mm	19
Fuze	19
3.5-in	16
100-lb Bomb	11
5-in	8
37mm	8
25-lb Bomb	6
250-lb Bomb	6
Dual Mode HE Rocket	6
5-lb Bomb	5
106mm	3
Grenade	1

AOC C Deep: Best 30 matches

Library type	Count
2.36-in	111
60mm	57
Rocket Motor	43
90mm	34
105mm	28
2.75-in	24
155mm	19
81mm	19
Fuze	19
3.5-in	16
100-lb Bomb	11
5-in	8
37mm	8
25-lb Bomb	6
250-lb Bomb	6
Dual Mode HE Rocket	6
5-lb Bomb	5
106mm	3
Grenade	1
·	

AOC C Deep: Matches 31-60

Library type	Count
2.36-in	111
60mm	57
Rocket Motor	43
90mm	34
105mm	28
2.75-in	24
155mm	19
81mm	19
Fuze	19
3.5-in	16
100-lb Bomb	11
5-in	8
37mm	8
25-lb Bomb	6
250-lb Bomb	6
Dual Mode HE Rocket	6
5-lb Bomb	5
106mm	3
Grenade	1

AOC C Deep: Matches 61-90

Library type	Count
2.36-in	111
60mm	57
Rocket Motor	43
90mm	34
105mm	28
2.75-in	24
155mm	19
81mm	19
Fuze	19
3.5-in	16
100-lb Bomb	11
5-in	8
37mm	8
25-lb Bomb	6
250-lb Bomb	6
Dual Mode HE Rocket	6
5-lb Bomb	5
106mm	3
Grenade	1

AOC C Deep: Matches 91-120

Black Tusk

QC Seed Performance

QC Seed Horizontal Offsets (cm)

	Mean	Max
Shallow	14.7	36.1
Deep	16.3	43.8

Horizontal Offset MQO: 50 cm

Processor seed examples

Spurious Picks, Inconclusive Sources and Suspected Empty TOI

Deep Water Diglist

- 1,989 TOI digs
- 2,085 inconclusive digs
 - 98.5% flagged as empty

Shallow Water Diglist

- 1,507 TOI digs
- 121 inconclusive digs

Conclusions

- UltraTEM marine data collected at this site supports AGC.
- Active thrusters introduce noise into EM data that impacts classification performance.
- Marine specific MQOs were developed to ensure project objectives were being met and recollects and gap fills were only applied to regions where project objectives could not be achieved.

